Charm and beauty:

 Heavy quark physics from lattice QCD

Jonna Koponen INFN Roma TorVergata

Istituto Nazionale di Fisica Nucleare
\& U. of Glasgow
with C.T.H. Davies, P. Lepage, A. Lytle, A. Santos
The XVII workshop on Statistical Mechanics and non Perturbative Field Theory, Bari, December 2017

Outline

- Motivation: discrepancies with SM in $b \rightarrow c$ semileptonic observables
- b quarks on the lattice
- Highly Improved Staggered Quarks
- Non-relativistic QCD
- $B_{c} \rightarrow J / \psi$ semileptonic decay, form factors
- Summary and outlook

Motivation

- Persistent discrepancy with SM in $b \rightarrow c$ semileptonic observables (in both $B \rightarrow D^{*}$ and $B_{c} \rightarrow J / \psi$)

$$
R\left(B \rightarrow D^{*}\right)=\frac{\mathcal{B}\left(B \rightarrow D^{*} \tau \nu\right)}{\mathcal{B}\left(B \rightarrow D^{*} \ell \nu\right)}, \quad \ell=e, \mu
$$

Reliable SM predictions are needed!

BaBar hadronic tag PRD 88 (2013) 072012 $0.332 \pm 0.024 \pm 0.018$
Belle hadronic tag PRD 92 (2015) 072014 $0.293 \pm 0.038 \pm 0.015$
Belle SL tag
PRD 94 (2016) 072007 $0.302 \pm 0.030 \pm 0.011$

Belle 1-prong

PRL 118 (2017) 211801 $0.270 \pm 0.035 \pm 0.027$

Lattice QCD

- Study mesons and their leptonic and semileptonic decays using state-of-the-art computer clusters
- fully nonperturbative QCD calculation
- high precision SM predictions

b-quark on the lattice

- Highly Improved Staggered Quarks (HISQ)
- small discretisation errors, very good for c
- typically discretisation errors grow with growing quark mass: $(m a)^{2}, \alpha_{s}(m a)^{2},(m a)^{4}$
- need $m a<1$ to control discretisation effects
- go up from charm quark mass as high as possible, can almost reach m_{b} on the finest lattices
- Same action for heavy and light quarks
- Small a, physical pions, $u / d, s$ and c quarks in the sea, multiple lattice spacings...

b-quark on the lattice

- NRQCD (Non-relativistic effective theory on the lattice, perturbative matching to QCD)
- accurate through $\mathcal{O}\left(\alpha_{s} v^{4}\right)$
- the scale of discretisation errors set by internal momenta $p a$
- good for heavy quarks like b, can not be used for lighter quarks (e.g. charm)
- need $m a>1$ to control coefficients of relativistic corrections

These two approaches are complementary. Ideally there is a range of overlap in applicability to check the approaches are mutually consistent.

NRQCD Hamiltonian

$$
\begin{aligned}
e^{-a H} & =\left(1-\frac{a \delta H}{2}\right)\left(1-\frac{a H_{0}}{2 n}\right) U_{t}^{\dagger}\left(1-\frac{a H_{0}}{2 n}\right)\left(1-\frac{a \delta H}{2}\right) \\
a H_{0}= & -\frac{\Delta^{(2)}}{2 a m_{b}} \\
a \delta H= & -c_{1} \frac{\left(\Delta^{(2)}\right)^{2}}{8\left(a m_{b}\right)^{3}}+c_{2} \frac{i}{8\left(a m_{b}\right)^{2}}(\nabla \cdot \tilde{E}-\tilde{E} \cdot \nabla)-c_{3} \frac{1}{8\left(a m_{b}\right)^{2}} \sigma \cdot(\tilde{\nabla} \times \tilde{E}-\tilde{E} \times \tilde{\nabla}) \\
& -c_{4} \frac{1}{2 a m_{b}} \sigma \cdot \tilde{B}+c_{5} \frac{\Delta^{(4)}}{24 a m_{b}}-c_{6} \frac{\left(\Delta^{(2)}\right)^{2}}{16 n\left(a m_{b}\right)^{2}}
\end{aligned}
$$

Set	c_{1}	c_{5}	c_{4}	c_{6}
very coarse	1.36	1.21	1.22	1.36
coarse	1.31	1.16	1.20	1.31
fine	1.21	1.12	1.16	1.21

Spanning c to b with HISQ: meson decay constant

- Probe mass from m_{c} towards m_{b} and extrapolate

J / ψ mass and decay constant

- Tune the charm quark mass accurately
- Use multiple lattice spacings, extrapolate to $a=0$
- Look at mass difference $M_{J / \psi}-M_{\eta}$ instead of $M_{J / \psi}$

Semileptonic decays

- Study of $B_{c} \rightarrow \eta_{c}, B_{c} \rightarrow J / \psi$ decay matrix elements
- We work in the frame where the B_{c} is at rest
- Matrix elements are determined by simultaneous fitting of three-point and two-point functions

$B_{c} \rightarrow J / \psi$ form factors

$$
\begin{aligned}
& \left\langle J / \psi\left(p^{\prime}, \epsilon\right)\right| V^{\mu}-A^{\mu}\left|B_{c}(p)\right\rangle=\frac{2 i \epsilon^{\mu \nu \rho \sigma}}{M_{B_{c}}+M_{J / \psi}} \epsilon_{\nu}^{*} p_{\rho}^{\prime} p_{\sigma} V\left(q^{2}\right) \\
& \quad-\left(M_{B_{c}}+M_{J / \psi}\right) \epsilon^{* \mu} A_{1}\left(q^{2}\right)+\frac{\epsilon^{*} \cdot q}{M_{B_{c}}+M_{J / \psi}}\left(p^{\prime}+p\right)^{\mu} A_{2}\left(q^{2}\right) \\
& \quad+2 M_{J / \psi} \frac{\epsilon^{*} \cdot q}{q^{2}} q^{\mu} A_{3}\left(q^{2}\right)-2 M_{J / \psi} \frac{\epsilon^{*} \cdot q}{q^{2}} q^{\mu} A_{0}\left(q^{2}\right) \\
& \quad \text { where } A_{3}\left(q^{2}\right)=\frac{M_{B_{c}}+M_{J / \psi}}{2 M_{J / \psi}} A_{1}\left(q^{2}\right)-\frac{M_{B_{c}}-M_{J / \psi}}{2 M_{J / \psi}} A_{2}\left(q^{2}\right) \\
& \quad \text { and } A_{3}(0)=A_{0}(0)
\end{aligned}
$$

The form factors which parametrise the matrix elements are functions of q^{2}, where q is the fourmomentum transferred to the leptons

- $q^{2}=\left(M_{B_{c}}-M_{J / \psi}\right)^{2}$, zero recoil of decay hadron
- $q^{2}=0$, maximum recoil of decay hadron

NRQCD $B_{c} \rightarrow J / \psi$ form factors

- Cover the full q^{2} range
- Physical b quark mass

$B_{c} \rightarrow J / \psi$ form factors: $A_{l}\left(q^{2} \max \right)$

$B_{c} \rightarrow J / \psi$ form factors: $A_{l}\left(q^{2}=0\right)$

Comparisons $B_{c} \rightarrow J / \psi$

hep-ph/0007I69,02II02I,0306306 (relativistic quark model, QCD sum rules)

R-ratios

$$
R\left(B_{c} \rightarrow J / \psi\right)=\frac{\mathcal{B}\left(B_{c} \rightarrow J / \psi \tau \nu\right)}{\mathcal{B}\left(B_{c} \rightarrow J / \psi \ell \nu\right)}, \quad \ell=e, \mu
$$

- Test lepton flavour universality
- There are persistent few-sigma anomalies in the ratios $R\left(B \rightarrow D^{*}\right)$ and $R(B \rightarrow D)$ involving the same $b \rightarrow c$ transition
- The current work will provide reliable SM determination for $R\left(B_{c} \rightarrow J / \psi\right)$, to be compared with recent measurement by LHCb

Summary

- A promising approach to study of $b \rightarrow c$ transitions:
- Lattice NRQCD with HISQ quarks, plus
- Fully relativistic formulation, extrapolate m_{h} to m_{b}
- Proof-of-principle demonstrated for B_{c} semileptonic decay
- Controlled calculation over full q^{2} range
- Good agreement seen with NRQCD results

Outlook

- $B_{c} \rightarrow J / \psi$ - new possible determination of $\left|V_{c b}\right|$
- Reliable SM prediction for $R\left(B_{c} \rightarrow J / \psi\right)$
- Improved understanding of NRQCD
currents feeds into additional calculations
$\left(B \rightarrow D, B \rightarrow D^{*}, \ldots\right)$
- Expand relativistic formalism e.g. to $B_{s} \rightarrow D_{s}^{*}$ at zero recoil

Thank you!

Backup slides

Continuum extrapolation

- Generic HQET-inspired fit form given by

$$
\begin{aligned}
& F\left(q^{2}, M_{\eta_{h}}, a^{2}\right)=A\left(q^{2}\right)\left(\frac{M_{\eta_{h}}}{M_{0}}\right)^{b} \times \\
& \quad\left[\sum_{i j k l} c_{i j k l}\left(q^{2}\right)\left(\frac{M_{0}}{M_{\eta_{h}}}\right)^{i}\left(\frac{a m_{c}}{\pi}\right)^{2 j}\left(\frac{a m_{h}}{\pi}\right)^{2 k}\left(\frac{a \Lambda_{\mathrm{QCD}}}{\pi}\right)^{2 l}\right]
\end{aligned}
$$

- Continuum result evaluated at $m_{h}=m_{b}$:

$$
F\left(q^{2}, M_{\eta_{b}}, 0\right)=A\left(q^{2}\right)\left(\frac{M_{\eta_{b}}}{M_{0}}\right)^{b}\left[\sum_{i 000} c_{i 000}\left(q^{2}\right)\left(\frac{M_{0}}{M_{\eta_{b}}}\right)^{i}\right]
$$

Normalising the currents

- Look at the pseudoscalar semileptonic decay and the scalar current (no normalisation factor needed)

$$
\left\langle\eta_{c}\left(p^{\prime}\right)\right| S\left|B_{c}(p)\right\rangle=\frac{M_{B_{c}}^{2}-M_{\eta_{c}}^{2}}{M_{b 0}-m_{c 0}} f_{0}\left(q^{2}\right)
$$

and fix the vector current normalisation at $q^{2}{ }_{\text {max }}$

$$
\begin{aligned}
\left\langle\eta_{c}\left(p^{\prime}\right)\right| V^{\mu}\left|B_{c}(p)\right\rangle & =f_{+}\left[p^{\mu}+p^{\prime \mu}-\frac{M_{B_{c}}^{2}-M_{\eta_{c}}^{2}}{q^{2}} q^{\mu}\right] \\
& +f_{0}\left(q^{2}\right) \frac{M_{B_{c}}^{2}-M_{\eta_{c}}^{2}}{q^{2}} q^{\mu}
\end{aligned}
$$

- Normalise the axial current using PCAC relation

$$
p_{\mu}\langle 0| A^{\mu}\left|B_{c}\right\rangle=\left(m_{c 0}+m_{b 0}\right)\langle 0| P\left|B_{c}\right\rangle
$$

B_{c} decay constant

SU(3)

Other decays involving vector mesons

weak decay $D_{s} \rightarrow \phi \ell v$

Figs. by G. Donald, HPQCD, arXiv:I3II. 6669 and I208.2855
charmonium radiative decay $\mathrm{J} / \psi \rightarrow \eta_{c} \gamma$

$D_{s} \rightarrow \phi \ell v$ angular

 distributionsG. Donald, HPQCD, Lattice 2013

D_{s}

Experimental data from BaBar, PRD 78, 051101(R) (2008)

$D_{s} \rightarrow \phi \ell v$ differential decay rate

$$
\begin{aligned}
\frac{\mathrm{d} \Gamma\left(P \rightarrow V \ell \nu, V \rightarrow P_{1} P_{2}\right)}{\mathrm{d} q^{2} \mathrm{~d} \cos \theta_{V} \mathrm{~d} \cos \theta_{\ell} \mathrm{d} \chi} & =\frac{3}{8(4 \pi)^{4}} G_{F}^{2}\left|V_{q^{\prime} Q}\right|^{2} \frac{p_{V} q^{2}}{M^{2}} \mathcal{B}\left(V \rightarrow P_{1} P_{2}\right) \\
& \times\left\{\left(1-\eta \cos \theta_{\ell}\right)^{2} \sin ^{2} \theta_{V}\left|H_{+}\left(q^{2}\right)\right|^{2}\right. \\
& +\left(1+\eta \cos \theta_{\ell}\right)^{2} \sin ^{2} \theta_{V}\left|H_{-}\left(q^{2}\right)\right|^{2} \\
& +4 \sin ^{2} \theta_{\ell} \cos ^{2} \theta_{V}\left|H_{0}\left(q^{2}\right)\right|^{2} \\
& -4 \eta \sin \theta_{\ell}\left(1-\eta \cos \theta_{\ell}\right) \sin \theta_{V} \cos \theta_{V} \cos \theta_{\chi} H_{+}\left(q^{2}\right) H_{0}\left(q^{2}\right) \\
& +4 \eta \sin \theta_{\ell}\left(1+\eta \cos \theta_{\ell}\right) \sin \theta_{V} \cos \theta_{V} \cos \theta_{\chi} H_{+}\left(q^{2}\right) H_{0}\left(q^{2}\right) \\
& \left.-2 \sin ^{2} \theta_{\ell} \sin ^{2} \theta_{V} \cos 2 \chi H_{+}\left(q^{2}\right) H_{-}\left(q^{2}\right)\right\}
\end{aligned}
$$

where the helicity amplitudes are

$$
\begin{aligned}
H_{0}\left(q^{2}\right) & =\frac{1}{2 m_{\phi} \sqrt{q^{2}}}\left[\left(M^{2}-m_{\phi}^{2}-q^{2}\right)\left(M+m_{\phi}\right) A_{1}\left(q^{2}\right)-4 \frac{M^{2} p_{\phi}^{2}}{M+m_{\phi}} A_{2}\left(q^{2}\right)\right] \\
H_{ \pm}\left(q^{2}\right) & =\left(M+m_{\phi}\right) A_{1}\left(q^{2}\right) \mp \frac{2 M p_{\phi}}{M+m_{\phi}} V\left(q^{2}\right)
\end{aligned}
$$

Meson decay constants: summary

Lattice QCD

= fully nonperturbative QCD calculation RECIPE

- Generate sets of gluon fields for Monte Carlo integration of path integral (including effects of u, d, s and c sea quarks)
- Calculate averaged "hadron correlators" from valence quark propagators
- Fit as a function of time to obtain
 masses and simple matrix elements

Lattice QCD RECIPE continued

- Determine lattice spacing a and fix m_{q} using experimental information (often meson masses) to get results in physical units
- extrapolate to $a=0$, physical u / d quark mass for real world
- lattices with physical $m_{u, d}$ now available: chiral extrapolation becoming a small correction


```
Example parameters for calculations now being done with
```



```
"2nd generation" lattices inc. c quarks in sea HISQ = Highly improved staggered quarks very accurate discretisation E.Follana et al, HPQCD, hep-lat/ 0610092 。
real 0.02 world \(m_{\pi^{0}}=0\)
\[
\mathrm{a}^{2} / \mathrm{fm}^{2}
\]
\[
m_{\pi} L>3
\]
```

Hadron correlation functions ('2-point functions') give masses and decay constants.

$$
A_{n}=\frac{|\langle 0| H| n\rangle\left.\right|^{2}}{2 m_{n}}=\frac{f_{n}^{2} m_{n}}{2}
$$

masses of all hadrons with
quantum numbers of H
decay constant parameterises amplitude to annihilate - a property of the meson calculable in QCD. Relate to experimental decay rate. 1% accurate experimental info.
 for f and m for many mesons!
Need accurate determination from lattice QCD to match

Darwin@Cambridge, part of UK's HPC facility for theoretical particle physics and astronomy

State-of-the-art commodity cluster: 9600 Intel Sandybridge cores, infiniband interconnect, fast switch and 2 Pbytes storage

Allows us to calculate quark propagators rapidly and store them for flexible re-use.

