HPQCD//

Charm and beauty: Heavy quark physics from lattice QCD

Jonna Koponen INFN Roma Tor Vergata & U. of Glasgow with C.T.H. Davies, P. Lepage, A. Lytle, A. Santos

The XVII workshop on Statistical Mechanics and non Perturbative Field Theory, Bari, December 2017

Outline

- Motivation: discrepancies with SM in $b \rightarrow c$ semileptonic observables
- b quarks on the lattice
 - Highly Improved Staggered Quarks
 - Non-relativistic QCD
- $B_c \rightarrow J/\psi$ semileptonic decay, form factors
- Summary and outlook

Motivation

Lattice QCD

- Study mesons and their leptonic and semileptonic decays using state-ofthe-art computer clusters
 - fully nonperturbative QCD calculation

- high precision SM predictions

b-quark on the lattice

- Highly Improved Staggered Quarks (HISQ)
 - small discretisation errors, very good for \boldsymbol{c}
 - typically discretisation errors grow with growing quark mass: $(ma)^2$, $\alpha_s(ma)^2$, $(ma)^4$
 - need ma < 1 to control discretisation effects
 - go up from charm quark mass as high as possible, can almost reach mb on the finest lattices
- Same action for heavy and light quarks
- Small *a*, physical pions, *u/d*, *s* and *c* quarks in the sea, multiple lattice spacings...

b-quark on the lattice

- NRQCD (Non-relativistic effective theory on the lattice, perturbative matching to QCD)
 - accurate through ${\cal O}(lpha_s v^4)$
 - the scale of discretisation errors set by internal momenta pa
 - good for heavy quarks like b, can not be used for lighter quarks (e.g. charm)
 - need ma>1 to control coefficients of relativistic corrections

These two approaches are complementary. Ideally there is a range of overlap in applicability to check the approaches are mutually consistent.

NRQCD Hamiltonian

$$e^{-aH} = \left(1 - \frac{a\delta H}{2}\right) \left(1 - \frac{aH_0}{2n}\right) U_t^{\dagger} \left(1 - \frac{aH_0}{2n}\right) \left(1 - \frac{a\delta H}{2}\right)$$

$$\begin{split} aH_0 &= -\frac{\Delta^{(2)}}{2am_b} \\ a\delta H &= -c_1 \frac{(\Delta^{(2)})^2}{8(am_b)^3} + c_2 \frac{i}{8(am_b)^2} (\nabla \cdot \tilde{E} - \tilde{E} \cdot \nabla) - c_3 \frac{1}{8(am_b)^2} \sigma \cdot (\tilde{\nabla} \times \tilde{E} - \tilde{E} \times \tilde{\nabla}) \\ &- c_4 \frac{1}{2am_b} \sigma \cdot \tilde{B} + c_5 \frac{\Delta^{(4)}}{24am_b} - c_6 \frac{(\Delta^{(2)})^2}{16n(am_b)^2} \end{split}$$

Set	c_1	C_5	c_4	c_6
very coarse	1.36	1.21	1.22	1.36
coarse	1.31	1.16	1.20	1.31
fine	1.21	1.12	1.16	1.21

Spanning c to b with HISQ: meson decay constant

• Probe mass from m_c towards m_b and extrapolate

J/ψ mass and decay constant

- Tune the charm quark mass accurately
- Use multiple lattice spacings, extrapolate to a=0
- Look at mass difference $M_{J/\psi}$ - M_η instead of $M_{J/\psi}$

Semileptonic decays

- Study of $B_c \rightarrow \eta_c$, $B_c \rightarrow J/\psi$ decay matrix elements
- We work in the frame where the B_c is at rest
- Matrix elements are determined by simultaneous fitting of three-point and two-point functions

$B_c \rightarrow J/\psi$ form factors

$$\langle J/\psi(p',\epsilon)|V^{\mu} - A^{\mu}|B_{c}(p)\rangle = \frac{2i\epsilon^{\mu\nu\rho\sigma}}{M_{B_{c}} + M_{J/\psi}} \epsilon_{\nu}^{*}p'_{\rho}p_{\sigma}V(q^{2}) - (M_{B_{c}} + M_{J/\psi})\epsilon^{*\mu}A_{1}(q^{2}) + \frac{\epsilon^{*} \cdot q}{M_{B_{c}} + M_{J/\psi}}(p'+p)^{\mu}A_{2}(q^{2}) + 2M_{J/\psi}\frac{\epsilon^{*} \cdot q}{q^{2}}q^{\mu}A_{3}(q^{2}) - 2M_{J/\psi}\frac{\epsilon^{*} \cdot q}{q^{2}}q^{\mu}A_{0}(q^{2}), \text{ where } A_{3}(q^{2}) = \frac{M_{B_{c}} + M_{J/\psi}}{2M_{J/\psi}}A_{1}(q^{2}) - \frac{M_{B_{c}} - M_{J/\psi}}{2M_{J/\psi}}A_{2}(q^{2}) \text{ and } A_{3}(0) = A_{0}(0)$$

The form factors which parametrise the matrix elements are functions of q^2 , where q is the fourmomentum transferred to the leptons

- $q^2 = (M_{B_c} M_{J/\psi})^2$, zero recoil of decay hadron
- $q^2 = 0$, maximum recoil of decay hadron

NRQCD $B_c \rightarrow J/\psi$ form factors

- Cover the full q^2 range
- Physical *b* quark mass

$B_c \rightarrow J/\psi$ form factors: $A_1(q^2_{\rm max})$

$B_c \rightarrow J/\psi$ form factors: $A_1(q^2=0)$

Comparisons $B_c \rightarrow J/\psi$

hep-ph/0007169,0211021,0306306 (relativistic quark model, QCD sum rules)

R-ratios

$$R(B_c \to J/\psi) = \frac{\mathcal{B}(B_c \to J/\psi\tau\nu)}{\mathcal{B}(B_c \to J/\psi\ell\nu)}, \quad \ell = e, \mu$$

- Test lepton flavour universality
- There are persistent few-sigma anomalies in the ratios $R(B \rightarrow D^*)$ and $R(B \rightarrow D)$ involving the same $b \rightarrow c$ transition
- The current work will provide reliable SM determination for $R(B_c \rightarrow J/\psi)$, to be compared with recent measurement by LHCb

Summary

- A promising approach to study of $b \rightarrow c$ transitions:
 - Lattice NRQCD with HISQ quarks, plus
 - Fully relativistic formulation, extrapolate m_h to m_b
- Proof-of-principle demonstrated for B_c semileptonic decay
 - Controlled calculation over full q^2 range
 - Good agreement seen with NRQCD results

Outlook

- $B_c \rightarrow J/\psi$ new possible determination of $|V_{cb}|$
- Reliable SM prediction for $R(B_c \rightarrow J/\psi)$
- Improved understanding of NRQCD currents feeds into additional calculations $(B \rightarrow D, B \rightarrow D^*, ...)$
- Expand relativistic formalism e.g. to $B_s \rightarrow D_s^*$ at zero recoil

Thank you!

Backup slides

Continuum extrapolation

- Generic HQET-inspired fit form given by $F(q^2, M_{\eta_h}, a^2) = A(q^2) \left(\frac{M_{\eta_h}}{M_0}\right)^b \times \left[\sum_{ijkl} c_{ijkl}(q^2) \left(\frac{M_0}{M_{\eta_h}}\right)^i \left(\frac{am_c}{\pi}\right)^{2j} \left(\frac{am_h}{\pi}\right)^{2k} \left(\frac{a\Lambda_{\rm QCD}}{\pi}\right)^{2l}\right]$
- Continuum result evaluated at $m_h = m_b$: $F(q^2, M_{\eta_b}, 0) = A(q^2) \left(\frac{M_{\eta_b}}{M_0}\right)^b \left[\sum_{i000} c_{i000}(q^2) \left(\frac{M_0}{M_{\eta_b}}\right)^i\right]$

Normalising the currents

• Look at the pseudoscalar semileptonic decay and the scalar current (no normalisation factor needed)

$$\langle \eta_c(p')|S|B_c(p)\rangle = \frac{M_{B_c}^2 - M_{\eta_c}^2}{M_{b0} - m_{c0}}f_0(q^2)$$

and fix the vector current normalisation at q^{2}_{\max}

$$\langle \eta_c(p') | V^{\mu} | B_c(p) \rangle = f_+ \left[p^{\mu} + p'^{\mu} - \frac{M_{B_c}^2 - M_{\eta_c}^2}{q^2} q^{\mu} \right]$$
$$+ f_0(q^2) \frac{M_{B_c}^2 - M_{\eta_c}^2}{q^2} q^{\mu}$$

• Normalise the axial current using PCAC relation $p_{\mu}\langle 0|A^{\mu}|B_{c}\rangle = (m_{c0} + m_{b0})\langle 0|P|B_{c}\rangle$

B_c decay constant

Other decays involving vector mesons

$D_s \rightarrow \phi \ell v$ angular distributions

G. Donald, HPQCD, Lattice 2013

 D_s 10ns-1 10ns-1 0.2 0.25 0.2 0.15 0.15 0.1 0.1 ĪIII 0.05 0.05 0 -0.5 0.5 -1 -0.5 0.5 -1 $\mathbf{0}$ $\cos \theta_{\rm K}$ $\cos \theta_1$

Experimental data from BaBar, PRD 78, 051101(R) (2008)

$D_s \rightarrow \phi \ell v$ differential decay rate

$$\begin{aligned} \frac{\mathrm{d}\Gamma(P \to V\ell\nu, V \to P_1P_2)}{\mathrm{d}q^2\mathrm{d}\cos\theta_V\mathrm{d}\cos\theta_\ell\mathrm{d}\chi} &= \frac{3}{8(4\pi)^4}G_F^2|V_{q'Q}|^2\frac{p_Vq^2}{M^2}\mathcal{B}(V \to P_1P_2) \\ &\times \left\{(1 - \eta\cos\theta_\ell)^2\sin^2\theta_V|H_+(q^2)|^2 \\ &+ (1 + \eta\cos\theta_\ell)^2\sin^2\theta_V|H_-(q^2)|^2 \\ &+ 4\sin^2\theta_\ell\cos^2\theta_V|H_0(q^2)|^2 \\ &- 4\eta\sin\theta_\ell(1 - \eta\cos\theta_\ell)\sin\theta_V\cos\theta_V\cos\theta_\chi H_+(q^2)H_0(q^2) \\ &+ 4\eta\sin\theta_\ell(1 + \eta\cos\theta_\ell)\sin\theta_V\cos\theta_V\cos\theta_\chi H_+(q^2)H_0(q^2) \\ &- 2\sin^2\theta_\ell\sin^2\theta_V\cos2\chi H_+(q^2)H_-(q^2)\}, \end{aligned}$$

where the helicity amplitudes are

$$H_0(q^2) = \frac{1}{2m_\phi\sqrt{q^2}} \left[(M^2 - m_\phi^2 - q^2)(M + m_\phi)A_1(q^2) - 4\frac{M^2 p_\phi^2}{M + m_\phi}A_2(q^2) \right]$$

$$H_{\pm}(q^2) = (M + m_{\phi})A_1(q^2) \mp \frac{2Mp_{\phi}}{M + m_{\phi}}V(q^2)$$

Meson decay constants: summary

DECAY CONSTANT [GeV]

Lattice QCD = fully nonperturbative QCD calculation

RECIPE

- Generate sets of gluon fields for Monte Carlo integration of path integral (including effects of *u*, *d*, *s* and *c* sea quarks)
- Calculate averaged "hadron correlators" from valence quark propagators
- Fit as a function of time to obtain masses and simple matrix elements

Lattice QCD RECIPE continued

- Determine lattice spacing a and fix m_q using experimental information (often meson masses) to get results in physical units
- extrapolate to a=0, physical u/d quark mass for real world
 - lattices with physical $m_{u,d}$ now available: chiral extrapolation becoming a small correction

Hadron correlation functions ('2-point functions') give masses and decay constants. $\langle 0|H^{\dagger}(T)H(0)|0\rangle = \sum A_n e^{-m_n T} \stackrel{\text{large}}{\to} A_0 e^{-m_n T} \stackrel{\text{large}}{\to} A_0 e^{-m_n T}$ \boldsymbol{n} masses of all CD hadrons with quantum $A_n = \frac{|\langle 0|H|n\rangle|^2}{2m_n}$ $f_n^2 m_n$ numbers of H

decay constant parameterises amplitude to annihilate - a property of the meson calculable in QCD. Relate to experimental decay rate. 1% accurate experimental info

1% accurate experimental info.for f and m for many mesons!Need accurate determinationfrom lattice QCD to match

Darwin@Cambridge, part of UK's HPC facility for theoretical particle physics and astronomy

State-of-the-art commodity cluster: 9600 Intel Sandybridge cores, infiniband interconnect, fast switch and 2 Pbytes storage

www.dirac.ac.uk

Allows us to calculate quark propagators rapidly and store them for flexible re-use.

