

Andrea Scagliarini

CNR-IAC Istituto per le Applicazioni del Calcolo "M. Picone"

andrea.scagliarini@cnr.it

XVII Workshop on Statistical Mechanics & nonperturbative Field Theory Centro Polifunzionale UniBA, Bari, 13th December 2017

Not liquids, nor solids

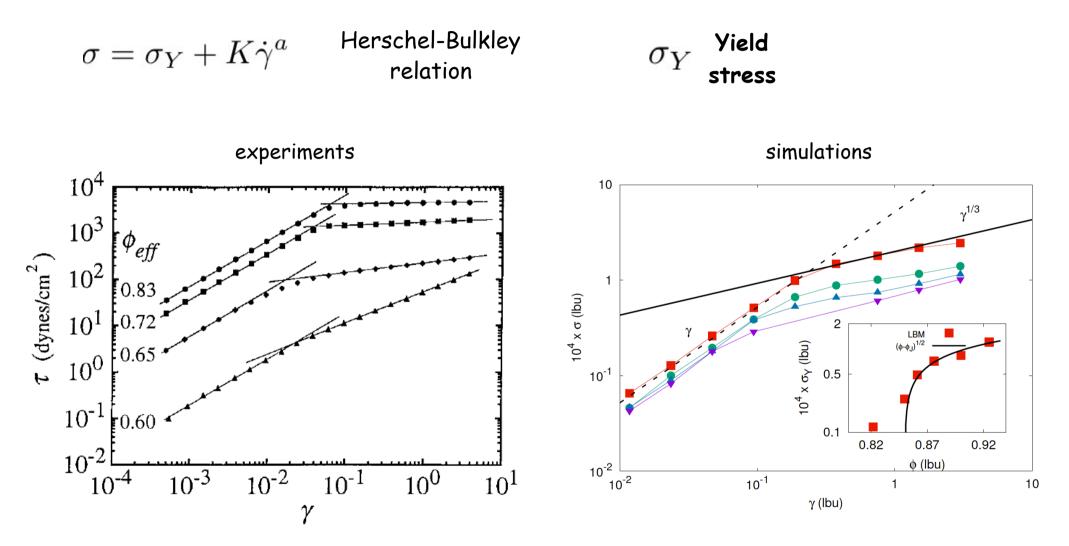
"a **solid** has a stable definite shape" (from Wikipedia)

?!?

"a liquid conforms to the shape of its container"

Yielding and non-Newtonian rheology

Stress-strain curves for dense microemulsions/dry foams

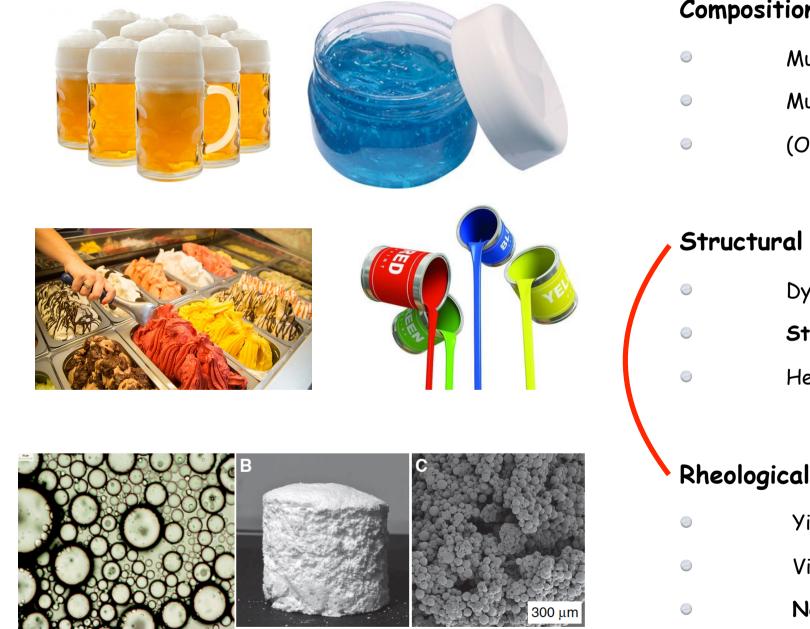


(TG Mason et al, J. Colloid Interface Sci. 179, 439 (1996))

(AS et al, Europhys. Lett 114, 64003 (2016))

Complex fluids

Emulsions, foams, gels, polymers, pastes...



Composition

- Multiple phases
- Multiple components
- (Often **both**)

Structural complexity

- Dynamical arrest
- Structural disorder
- Heterogeneities

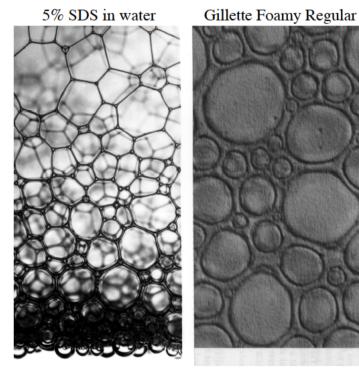
Rheological complexity

- **Yield stress**
- Viscoelasticity
 - Non-local plastic activity

Foams and emulsions

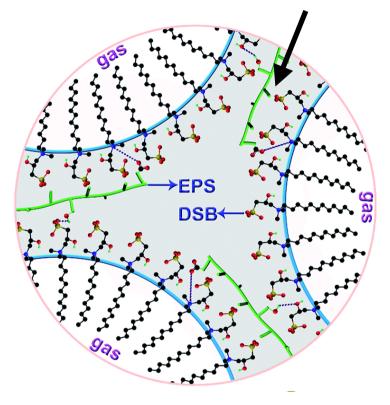
gas (dispersed) + liquid (continuous) liquid (dispersed) + liquid (continuous)

surfactant-stabilised films



3 mm bubbles

30 µm bubbles



(Deng et al, RSC Adv. 5, 61868 (2015))

"Effective" modelling of surfactants. What is their the mechanical 'translation'?

Lattice Boltzmann Method (LBM): basics

Lattice Boltzmann Equation (LBE)

$$f_i^{(\alpha)}\left(\mathbf{r} + \mathbf{c}_i \Delta t, t + \Delta t\right) - f_i^{(\alpha)}\left(\mathbf{r}, t\right) = \Lambda_{ij}^{(\alpha)}\left(f_j^{(\alpha)} - f_j^{(\alpha)(eq)}\right)$$

FREE-STREAMING

COLLISIONS (relaxation towards a local equilibrium)

$$f_i^{(\alpha)(eq)} = w_i \rho^{(\alpha)} \left[1 + \frac{\mathbf{u} \cdot \mathbf{c}_i}{c_s^2} + \frac{\mathbf{u} \cdot (\mathbf{c}_i \mathbf{c}_i - c_s^2 \mathbf{1})}{c_s^4} \right] \begin{array}{l} \text{local equilibrium} & \alpha = A, B \\ \text{(low Mach number expansion} & 0 \\ \text{of Maxwellian equilibrium} & i = 0, 2, \dots, 8 \end{array} \right]$$

Hydrodynamic fields

lattice speeds

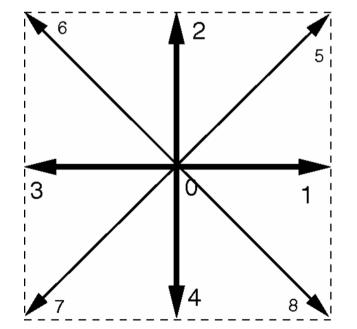
density

momentum

$$\rho^{(\alpha)}(\mathbf{r},t) = \sum_{i} f_{i}^{(\alpha)}(\mathbf{r},t) \qquad \qquad \rho(\mathbf{r},t)\mathbf{u}(\mathbf{r},t) = \sum_{i,\alpha} f_{i}^{(\alpha)}(\mathbf{r},t)\mathbf{c}_{i}$$

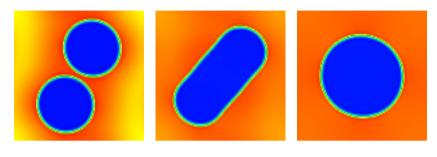
Force enters through the local equilibrium

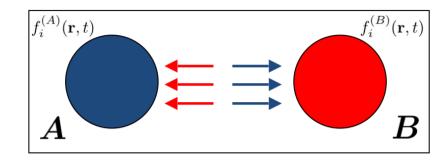
$$f_i^{(\alpha)(eq)}\left(\rho^{(\alpha)},\mathbf{u}\right) \to f_i^{(\alpha)(eq)}\left(\rho^{(\alpha)},\mathbf{u}+\tau_{LB}\mathbf{F}^{(\alpha)}/\rho^{(\alpha)}\right)$$



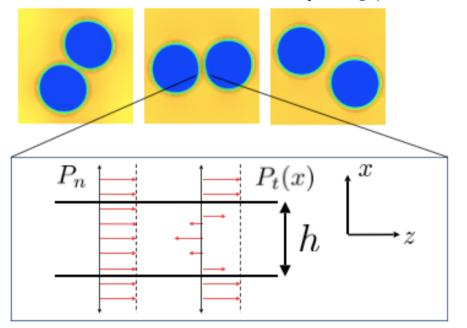
Modelling the surface tension and **disjoining pressure**

Surface tension (phase separation)

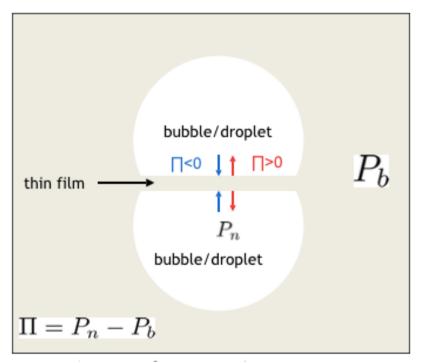




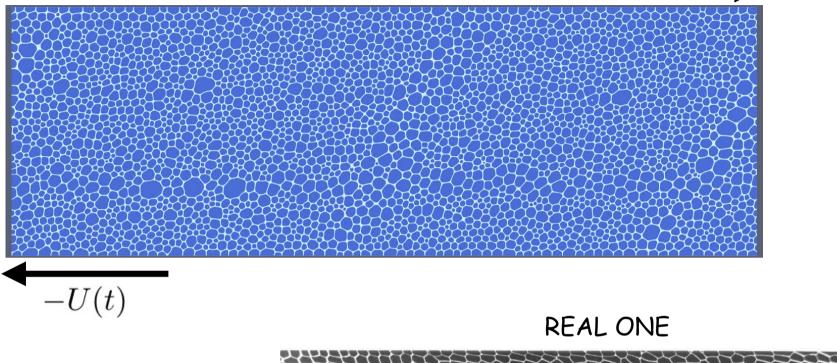
Disjoining pressure (stabilisation of thin films)



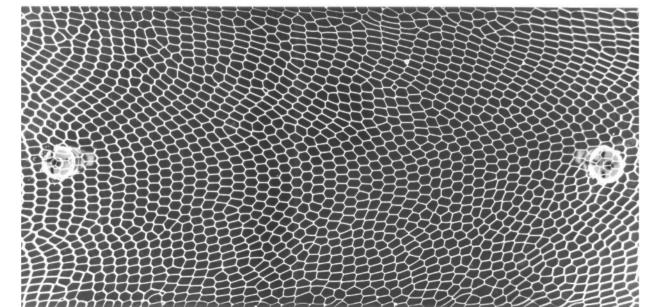
(Derjaguin & Churaev, J. Colloid. Interface Sci. 66, 389 (1978))



NUMERICAL "FOAM"



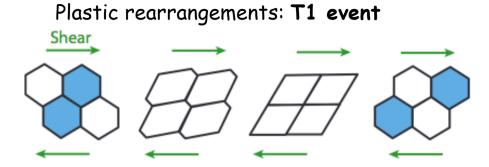
 $U(t) = U_P \sin(\omega t)$



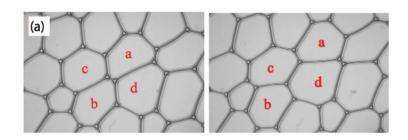
(B. Dollet, AS and M. Sbragaglia, J. Fluid Mech. 766, 556-589 (2015))

+U(t)

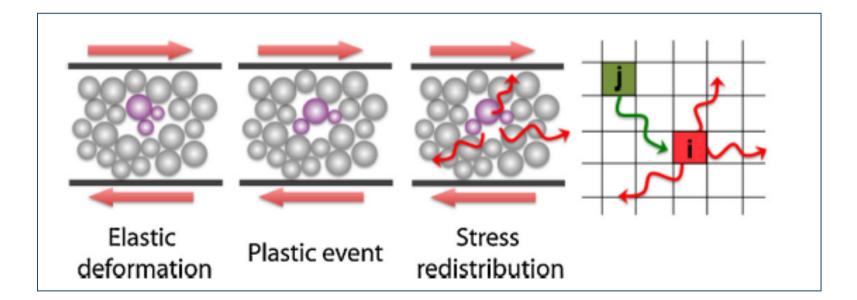
Plastic events and non-local stress relaxation



(S. Cohen-Addad et al, Annu. Rev. Fluid Mech. 45, 241 (2013))



(A. Kabla et al, J. Fluid Mech. 587, 45 (2007))



(L. Bocquet et al, Phys. Rev. Lett. 103, 036001 (2009))

Theory of Soft-Glassy Rheology

Equation for the probability distribution of stresses

$$\frac{\partial}{\partial t}P = -\dot{\gamma}\frac{\partial}{\partial l}P - \Gamma_0 e^{-(E-\frac{1}{2}kl^2)/x}P + \Gamma(t)\rho(E)\delta(l)$$

structural disorder

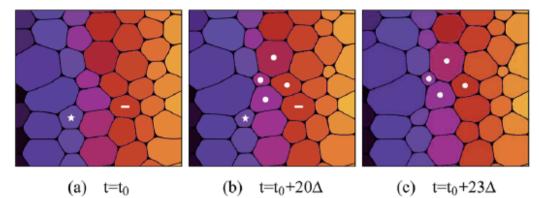
"complex" energy landscape (distribution of energy wells)

(non-local) coupling among plastic rearrangements effective "noise temperature"

Does such conjecture make any sense?

(P. Sollich et al, Phys. Rev. Lett. 78, 2020-2023 (1997); J.-P. Bouchaud et al, J. Phys. I France 5, 1521-1526 (1995))

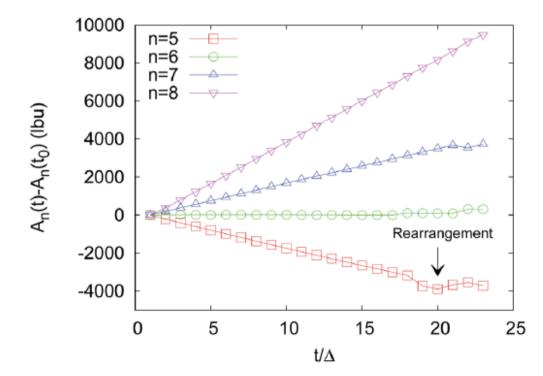
"Ageing" and rearrangements



von Neumann's law

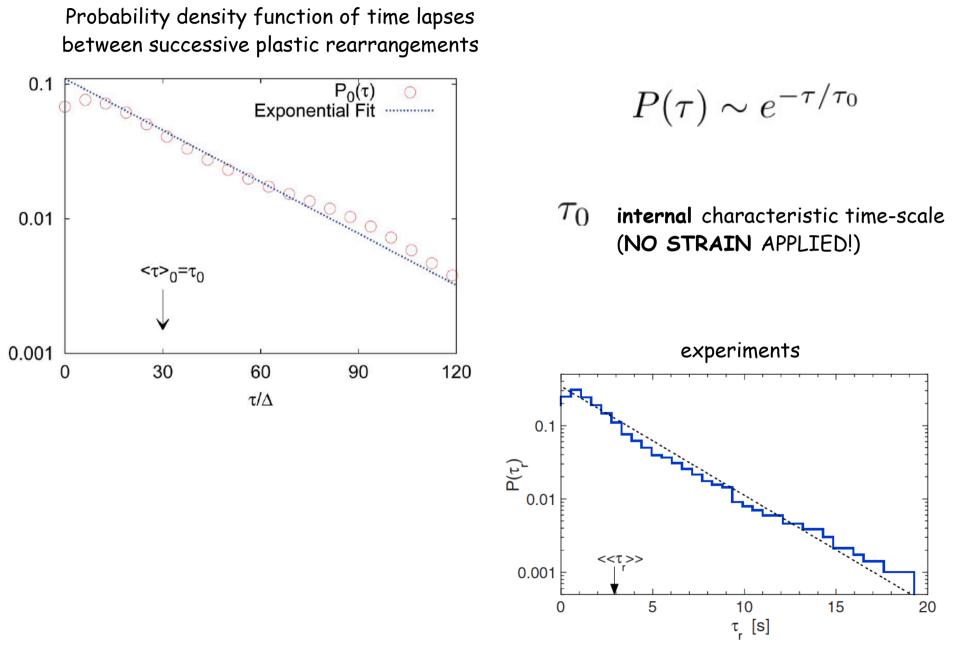
$$\frac{dA_n(t)}{dt} = K(n-6)$$

(variation of area of bubbles with n neighbours)



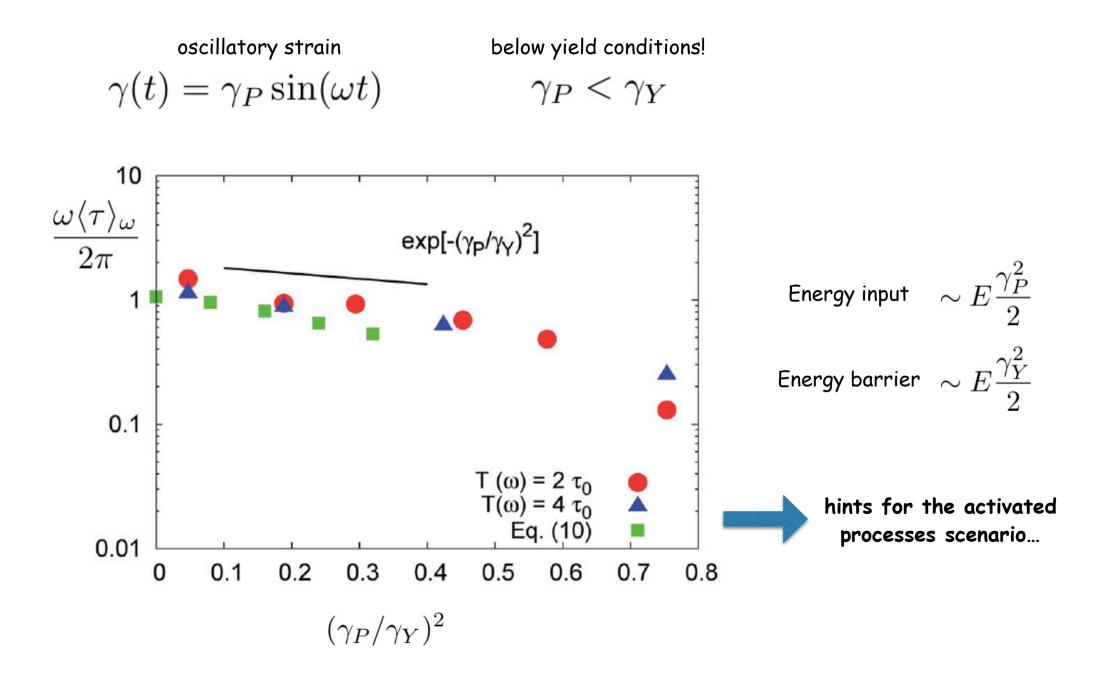
coarsening as a source of effective "mechanical noise"

Statistics of rearrangements during coarsening



(A.S. Gittings & D.J. Durian, Phys. Rev. E 78, 066313 (2008))

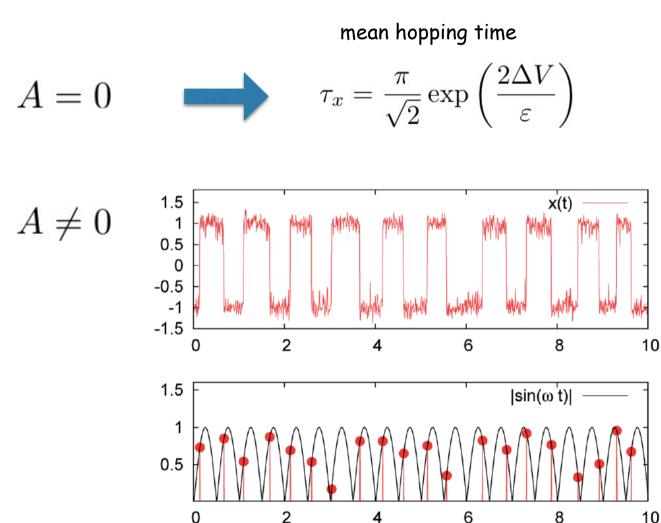
Mean time lapse under oscillatory strain

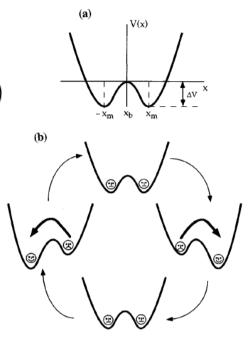


Stochastic Resonance (SR) in a nutshell

overdamped of a Brownian particle + periodic forcing

 $\dot{x} = x(1-x^2) + A\sin(\omega t) + \xi(t) \quad \langle \xi(t)\xi(t')\rangle = \varepsilon\delta(t-t')$





(L. Gammaitoni et al, Rev. Mod. Phys. **70**, 223-287 (1998))

matching condition

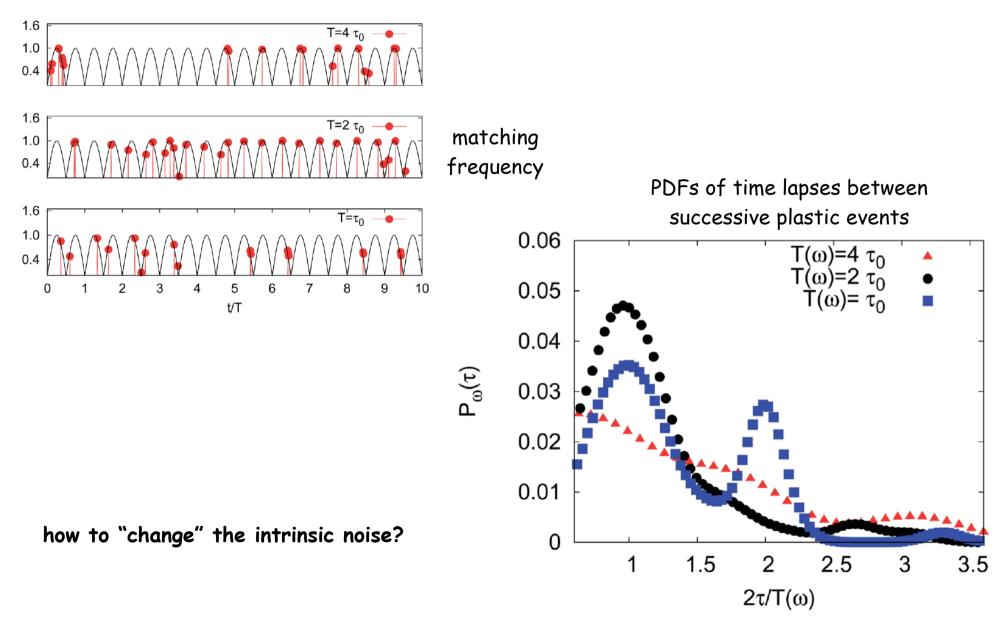
$$\frac{\pi}{\omega} = \tau_x$$

(R. Benzi et al, J, Phys. A: Math. Gen. 14, L453-L457 (1981); Tellus 34, 10-15 (1982))

t/T

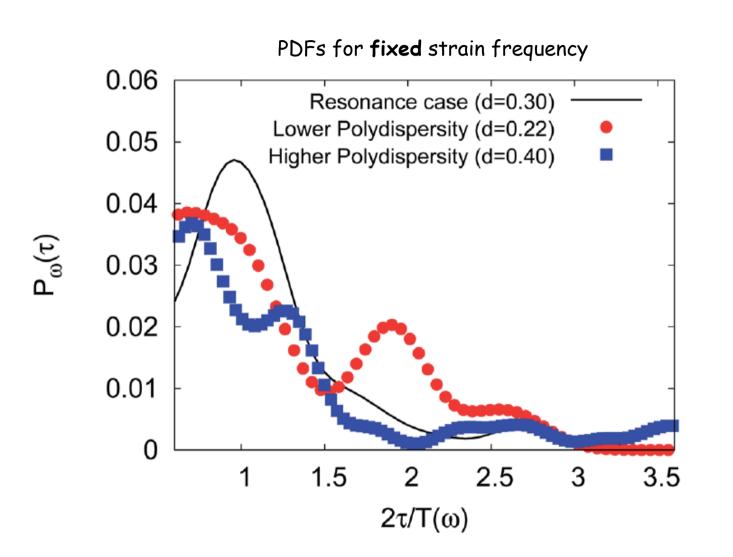
SR signatures in the plastic dynamics of Soft-Glassy Materials

 $|\sin(\omega t)|$ and occurrence of plastic events



(R. Benzi, M. Sbragalia, AS et al, Soft Matter 11, 1271-1280 (2015))

Polydispersity: a control on the intrinsic effective noise?



polydispersity $d=rac{\langle {\cal A}^2
angle^{1/2}}{\langle {\cal A}
angle}$

changing polydispersity drives the system out of the matching condition!

polydispersity \sim noise

Take home messages...

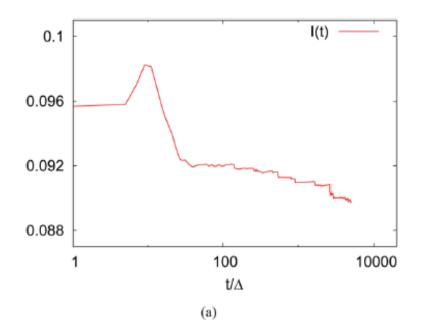
- Instrinsic characteristic time-scale of plastic activity induced by coarsening
- · Plastic rearrangements can be regarded as activated processes induced by a "noise"
- Signatures of stochastic resonance from simulations of oscillatory strain
- Intrinsic noise correlates to spatial disorder, quantified by polydispersity

... and perspectives

• Quantification of the intrinsic noise from non-equilibrium fluctuation-dissipation theorems

CREDITS: R. Benzi and M. Sbragaglia (UniToV) M. Bernaschi and S. Succi (IAC-CNR) F. Toschi (TU/e)

Grazie per l'attenzione!



$$I(t) = \frac{1}{L^2} \int |\boldsymbol{\nabla}\phi(r)|^2 \mathrm{d}r$$

