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Introduction

The understanding and modelling of the dynamics of wetting and contact lines,
such as spreading or motion of a droplet on a solid surface, is a subject at the
forefront of physics, chemistry, and engineering;
The regularization at the contact line is an essential ingredient: within all the
descriptions provided in the literature, the physics near the contact line is
oversimplified since thermal fluctuations are ignored;
Our goal is to start a di�erent line of thought to investigate fluctuating contact
lines at the microscopic scale:

1) How thermal fluctuations behave close to a contact line?
2) Thermal fluctuations alone can provide any form of microscopic regularization within

a purely local fluctuating hydrodynamic framework?

The first step is then to consider a static contact line on a homogeneous
substrate in presence of thermal fluctuations.
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Take the thermodynamic limit, i.e. R æ Œ;
Study the average profiles, i.e. Èh(x)Í;
Quantify the thermal regularization, i.e. a. Nope
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Study the statistics of the contact point, i.e. P(R);
Study the average profiles, i.e. Èh(x)Í;
Quantify the thermal regularization, i.e. a.

Two dimensionless parameters

S = ◊Yh0/¸ (scale separation): tells us how much thermal
fluctuations can distort the interface;
· = ◊/◊Y (intensity of interactions): it parametrizes the
microscopic binding e�ects close to the solid substrate.
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Statistics of the contact point

Contact point probability
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Average profile and e�ective binding potential

Average profile
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Conclusions

We have investigated the e�ect of thermal fluctuations on the morphology of an
interface near a contact line in the presence of an impenetrable wall;
We have introduced the right ensemble (integration over R) where Young’s
angle is robust, and the inner physics depends on a boundary condition
parameter ◊ that is related to the microscopic deviation from Young’s angle;
The impenetrable nature of the boundary leads to a “repulsion” of capillary waves
from the wall and the interactions between the fluctuating interface and the wall
are captured in terms of an e�ective binding potential of finite range, solely
induced by thermal fluctuations;
Pseudo-partial wetting states are recovered in the limit ◊ æ ◊Y;
Open issue: Derivation of ◊ from inner model. Then, and then only, we may
expect to predict the conditions under which a pseudo-partial wetting transition
can be observed in a real three-dimensional case.
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Thanks for your attention!


