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X-ray Absorption Spectroscopy

XAS features

Selective for the absorber

Local probe (5 Å) (no crystals
needed)Photon energy
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X-ray Absorption Spectroscopy
A typical XAS experiment

N absorbing
centers

Detector

Sample

XAS spectrum

The XAS spectrum is the average of a
large number, N, of absorption events
from N absorbing centers, each one living
in a potentially slightly different
configuration
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Ab initio XAS spectra calculation

C2

C1
C3 Cn

Molecular dynamics trajectory

C1 C2 C3 Cn

Classical starting models
Different classical starting models are built
to explore the configurations space

t

Under the ergodic hypothesis, the
ensemble of configurations “seen” by
the X-rays could be substituted by the
single configurations along a molecular
dynamics trajectory
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Ab initio XAS calculations
Initial State 

Final State

Final state with
a core-hole

Initial state:
no core-hole
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Ab initio XAS calculations

…
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QuantumESPRESSO – Giannozzi 2009
XSPECTRA – Gougoussis 2009

…
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There are many XAS (and non-XAS) studies aimed
at elucidating Cu(II) and Zn(II) coordination mode in water

Different Cu(II)/Zn(II) – water coordination geometries have been proposed

Divalent Cations in water – Cu(II) & Zn(II)

Cu(II)/Zn(II) in water
29 water molecules in a 22 Å cubic box

88 atoms
113 valence electrons
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A classical approach to metal binding

The metal ion is represented by the 
dummy atoms method.
Dummy charges  are located in given 
geometries around the central metal ion

This allows building metal complexes 
without explicitly creating bonds between 
the metal and the surrounding atoms

Square-planar
Coordination mode

Classical modeling of metal ions

Octahedral
Coordination mode
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Cu(II) Configurations
20 configurations with 4 water molecules bound
to the Cu(II) along a classical MD trajectory

Atomic positions have then been quantum-mechanically refined

20 configurations with 6 water molecules bound
to the Cu(II) along a classical MD trajectory

Tetra-coordinated structures relax into
penta-coordinated ones

Hexa-coordinated structures remain hexa-
coordinated
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Zn(II) Configurations

Bari, December 13th , 2017

SM&FT 2017 



Comparison with Experimental data

XAS spectra of Cu2SO4 in water and of ZnCl2 in water acquired at ESRF
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Cu(II) - Comparison with Experimental data

The experimental spectrum is

better simulated by a

penta-coordinated Cu(II)

 Experimental data
 5-coordinated
 6-coordinated

Bari, December 13th , 2017

SM&FT 2017 

Simulations performed on
Zefiro (INFN) & Galileo (CINECA) clusters



Cu(II) - Comparison with Experimental data
A linear combination analysis shows
that the best agreement with the
experimental data is obtained when
assuming the presence of

78 % penta-coordinated Cu(II)
+

22% hexa-coordinated Cu(II)

G. La Penna, V. Minicozzi, S. Morante, G.C. Rossi, F. Stellato
J. Chemical Physics 743, 124508 (2015)
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Zn(II) - Comparison with Experimental data

The experimental spectrum is

Well reproduced assuming a

hexa-coordinated Zn(II)
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 Experimental data
 4-coordinated
 5-coordinated
- 6-coordinated

Simulations performed on
Galileo & Marconi (CINECA) clusters



Conclusions

• A multi-scale approach for the MD simulation of metal ions 

• A scheme for the ab initio calculation of experimental observables

• Good agreement between simulated and experimental data:

Cu(II) is mainly penta-coordinated, Zn(II) is hexa-coordinated

• Our method builds a bridge connecting

numerical simulations & experimental data
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Outlook
Running on a long bridge…

Biologically realistic and interesting systems,

e.g. a few A1-40 peptides (400 atoms,  1200 electrons) 
in complex with Cu(II) in a water environment

>108  Core Hours

106 core hours on CPU clusters were needed to perform 
MD simulations & XANES calculations 

of the small systems I talked about here
but…
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