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What are Soft-Glassy Materials∗?

Class of materials (gels, pastes,...)
Sharing a complex phenomenology (elasticity, yielding, ageing,...)

A good example: Emulsions

Ensembles of Droplets that do not coalesce - surfactants...

Display both solid and liquid features: yield stress σY

[
force

area

]
Solid-like behaviour - elastic response: σ < σY,

Liquid-like behaviour - flow is non-Newtonian: σ > σY.

∗R. G. Larson “The Structure and Rheology of Complex Fluids”, Oxford University Press, (1999)
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How do they flow? (Rheology)

Relation between σ and γ̇ ∝ ∂u

∂y
(shear rate)

Stress-dependent viscosity η(σ) =
σ

γ̇

Simple fluids: constant viscosity

Herschel-Bulkley relation

σ = σY +Aγ̇n, σ > σY 0
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The flow is due to irreversible plastic rearrangements of the droplets
How to detect them?

Changes in Delaunay Triangulation of droplets centers of mass
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Rearrangements happen at a rate Γ(x) which is space-dependent
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Rich physics involved

There are non-local effects in confined (micro-channels) flows
Finite-size effects: for fixed stress σ, the viscosity η depends on the channel size

KEP model∗: Fluidity f(x) =
γ̇

σ
∝ Γ(x)

ξ2∇2f(x) = f(x)− fb(σ),

ξ: cooperativity length

Non-trivial Boundary Effects: Wall Fluidity f(xw) = fw

1) Is it possible to tune the wall fluidity in a controlled way?
2) Can surface roughness tune fluidity?

Yield-stress transition
1) Rheology at the transition in stress-driven flows?
2) Correlations at the yield-stress point?

∗L. Bocquet et al., Phys. Rev. Lett. 103, 036001 (2009)
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HPC for Emulsions

Efficient simulations for emulsions with multi-GPU implementations of
Lattice Boltzmann method∗

General Prompt Tracking of topological changes†

∗M. Bernaschi, L. Rossi, R. Benzi, M. Sbragaglia & S. Succi, Phys. Rev. E, 80, 066707 (2009)
†M. Bernaschi, ML & M. Sbragaglia, Comp. Phys. Comm., 213, 19 - 28 (2017)
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HPC for Emulsions
Efficient simulations for emulsions with multi-GPU implementations of
Lattice Boltzmann method∗

General Prompt Tracking of topological changes†

What can we do?

Analyze centers of mass displacements

Track topological changes

Analyze Voronoi tesselation (elastic stress)

∗M. Bernaschi, L. Rossi, R. Benzi, M. Sbragaglia & S. Succi, Phys. Rev. E, 80, 066707 (2009)
†M. Bernaschi, ML & M. Sbragaglia, Comp. Phys. Comm., 213, 19 - 28 (2017)
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Controlled Fluidization∗: Experimental Setup

Pressure driven flow in microchannels
with patterned wall

Slip on the rough wall depends on
roughness parameters

Good fluidization measure

∆vslip = vsmooth − vrough
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∗L. Derzsi, D. Filippi, G. Mistura, M. Pierno, ML, M. Sbragaglia, M. Bernaschi & P. Garstecki, Phys. Rev.
E, 95, 052602 (2017)
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Controlled Fluidization∗: Experimental Results

3210.5
(bar)p

Systematic Study - Parameters

∇P Pressure Gradient

Φ Packing Fraction

λ Periodicity of the grooves

w Width between the grooves

g Gap between the grooves

Very Different Load Conditions

∆vslip

vplug

Experimental data scale on two master curves
Wide Gaps - Narrow Gaps

∗L. Derzsi, D. Filippi, ML, G. Mistura, M. Bernaschi, P. Garstecki, M. Sbragaglia & M. Pierno
(under review Soft Matt.)
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Controlled Fluidization: Numerical Results
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Controlled Fluidization: Numerical Results

More information from Boundary Dynamics
Droplets Displacements...

x

z ~∆i

...at the topological Boundary
(no need to specify height cutoff...)
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Controlled Fluidization: Numerical Results
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Controlled Fluidization: Numerical Results

Trapped vs. Get-in-Get-out

Very different boundary displacements
statistics

First ab initio study of fluctuations
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Yield-stress transition∗: Numerical Setup

Fully periodic densely packed emulsion near the yield-stress

Periodic forcing in space - stress-controlled flow - σp ' σY

σxy(x, y) = σp cos

(
2π

L
y

)
,

Yielding is not a stationary phenomenon!
How to characterize such behaviour?

∗R. Benzi, ML & M. Sbragaglia arXiv:1710.00686 [cond-mat.soft] (under review at PRX)
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Yield-stress transition∗: Metastability and Hysteresis
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Projection onto viscous profile
us(t) = 1

L

∑L−1
y=0 ux(y) sin

(
2π
L
y
)
,

τshear = γ̇−1

Elastic waves hamper us signal, let’s look at displacements...

∗R. Benzi, ML & M. Sbragaglia arXiv:1710.00686 [cond-mat.soft] (under review at PRX)
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Yield-stress transition∗: Displacements Analysis

Flow properties linked to droplets displacements: ~∆i = ~xi(t)− ~xi(t− δt),

We are interested in extreme events
∆s(t) ≡ sup

i
|~∆i(t)|,
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Take the log to tame intermittency...

Clear link to plastic events! (blue dots)
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∗R. Benzi, ML & M. Sbragaglia arXiv:1710.00686 [cond-mat.soft] (under review at PRX)
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Yield-stress transition: Bimodality and Correlations
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Results robust for realistic flows

Repeated transitions in time from solid
to fluid phase and back

Bimodal probability distribution for
log(∆s)

Qualitatively different from stick-slip (!)
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Largest correlations (dynamic
heterogeneities) at bimodality

Trapping time with power-law
distribution (as in sheared p-spin
glasses)
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Conclusions & Perspectives
Controlled Fluidizationa

aL. Derzsi, D. Filippi, G. Mistura, M. Pierno, ML, M. Sbragaglia, M. Bernaschi & P. Garstecki,
Phys. Rev. E, 95, 052602 (2017) + (under review Soft Matt.)

1) First systematic experimental study of wall roughness

2) Scaling law for fluidization as λ−1

3) According to g: Trapped vs. Get-in-get-out

4) First ab initio characterization of droplets dynamics fluctuations

5) Study the interplay between boundary and elasticity

Yield-stress transistionb

bR. Benzi, ML & M. Sbragaglia arXiv:1710.00686 [cond-mat.soft] (under review at PRX)

1) In a stress-driven flow yielding is not stationary

2) System intermittently tunnels from a solid to a fluid phase and back

3) Largest Dynamic Heterogeneity & power-law trapping time distribution at bimodality

4) Close relation to mean-field spin glasses phenomenology

HPC research† and resources crucial for these results
†M. Bernaschi, ML & M. Sbragaglia, Comp. Phys. Comm., 213, 19 - 28 (2017)
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Conclusions & Perspectives
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