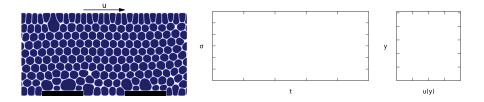
Yield Transition and Controlled Fluidization of Soft-Glassy Materials

SIVI&FI 2017

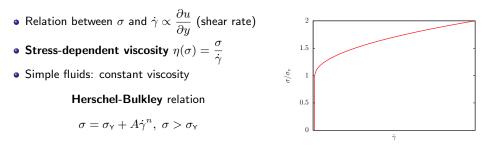

Speaker: Dr. Matteo Lulli^{1,2,3}

¹Dipartimento di Fisica, Università di Roma "Tor Vergata" and INFN ²Iniziativa Specifica "FieldTurb" ³ High performance data network: Convergenza di metodologie e integrazione di infrastrutture per il calcolo HPC e HTC - FONDI CIPE

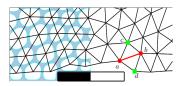
December the 13th, 2017

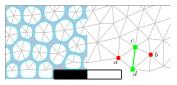
What are Soft-Glassy Materials*?

Class of materials (gels, pastes,...) Sharing a **complex** phenomenology (elasticity, yielding, ageing,...) A good example: **Emulsions**


Ensembles of Droplets that do not coalesce - surfactants...

Display both solid and liquid features: yield stress $\sigma_{Y} \left[\frac{\text{force}}{\text{area}} \right]$


- Solid-like behaviour elastic response: $\sigma < \sigma_{\rm Y}$,
- Liquid-like behaviour flow is non-Newtonian: $\sigma > \sigma_{Y}$.


*R. G. Larson "The Structure and Rheology of Complex Fluids", Oxford University Press, (1999)

How do they flow? (Rheology)

The flow is due to **irreversible plastic rearrangements** of the droplets How to detect them? Changes in **Delaunay Triangulation** of droplets **centers of mass**

Rearrangements happen at a rate $\Gamma(x)$ which is space-dependent

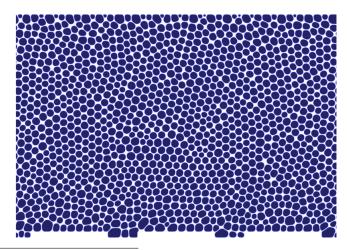
Rich physics involved

• There are non-local effects in confined (micro-channels) flows Finite-size effects: for fixed stress σ , the viscosity η depends on the channel size KEP model*: Fluidity $f(x) = \frac{\dot{\gamma}}{\sigma} \propto \Gamma(x)$

$$\xi^2 \nabla^2 f(x) = f(x) - f_{\mathsf{b}}(\sigma),$$

ξ : cooperativity length

- Non-trivial Boundary Effects: Wall Fluidity $f(x_w) = f_w$
 - 1) Is it possible to tune the wall fluidity in a controlled way?
 - 2) Can surface roughness tune fluidity?

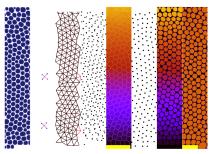

Yield-stress transition

- 1) Rheology at the transition in stress-driven flows?
- 2) Correlations at the yield-stress point?

^{*}L. Bocquet et al., Phys. Rev. Lett. 103, 036001 (2009)

HPC for Emulsions

- Efficient simulations for emulsions with **multi-GPU** implementations of **Lattice Boltzmann** method*
- General Prompt Tracking of topological changes[†]



*M. Bernaschi, L. Rossi, R. Benzi, M. Sbragaglia & S. Succi, *Phys. Rev. E*, **80**, 066707 (2009)
[†]M. Bernaschi, ML & M. Sbragaglia, *Comp. Phys. Comm.*, **213**, 19 - 28 (2017)

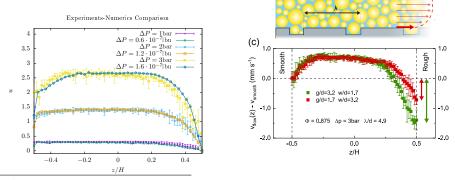
Matteo Lulli

HPC for Emulsions

- Efficient simulations for emulsions with **multi-GPU** implementations of **Lattice Boltzmann** method*
- General Prompt Tracking of topological changes[†]

What can we do?

- Analyze centers of mass displacements
- Track topological changes
- Analyze Voronoi tesselation (elastic stress)


^{*}M. Bernaschi, L. Rossi, R. Benzi, M. Sbragaglia & S. Succi, *Phys. Rev. E*, **80**, 066707 (2009)

[†]M. Bernaschi, ML & M. Sbragaglia, *Comp. Phys. Comm.*, **213**, 19 - 28 (2017)

Controlled Fluidization*: Experimental Setup

- Pressure driven flow in microchannels with patterned wall
- Slip on the rough wall depends on roughness parameters
- Good fluidization measure

$$\Delta v_{\mathsf{slip}} = v_{\mathsf{smooth}} - v_{\mathsf{rough}}$$

(a)

Ļ

z=H/2

7=-H/2

a/d ≥ 3

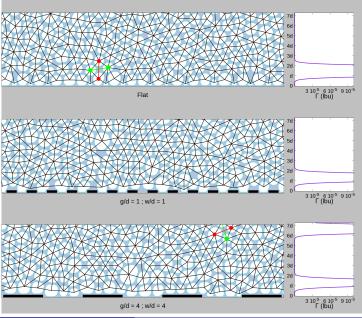
a/d ≤

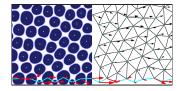
a

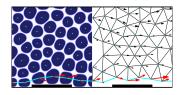
^{*}L. Derzsi, D. Filippi, G. Mistura, M. Pierno, ML, M. Sbragaglia, M. Bernaschi & P. Garstecki, *Phys. Rev. E*, **95**, 052602 (2017)

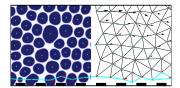
Controlled Fluidization*: Experimental Results

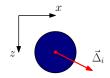
Systematic Study - Parameters

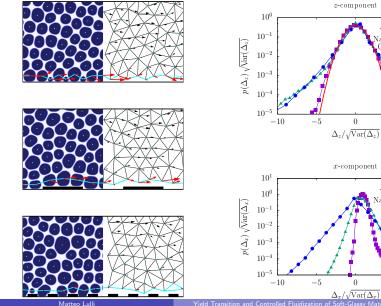

- ∇P Pressure Gradient
 - Φ Packing Fraction
 - λ Periodicity of the grooves
 - w Width between the grooves
 - g $\;$ Gap between the grooves


 $\frac{\Delta v_{\text{slip}}}{v_{\text{plug}}}$


Experimental data scale on two master curves Wide Gaps - Narrow Gaps


^{*}L. Derzsi, D. Filippi, ML, G. Mistura, M. Bernaschi, P. Garstecki, M. Sbragaglia & M. Pierno (under review *Soft Matt.*)


Matteo Lulli



More information from Boundary Dynamics Droplets **Displacements**...

...at the **topological Boundary** (no need to specify height cutoff...)

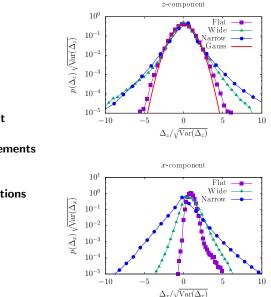
10 / 15

Flat -Wide

5

Flat -Wide -

5


Narrow -

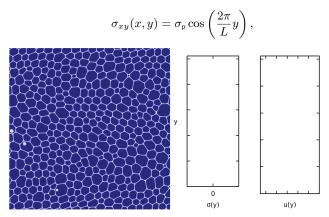
10

10

Narrow

Gauss

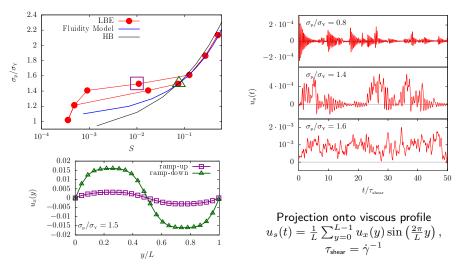
Trapped vs. Get-in-Get-out


Very different boundary displacements statistics

First ab initio study of fluctuations

Yield-stress transition*: Numerical Setup

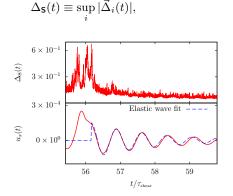
Fully periodic densely packed emulsion near the yield-stress


• Periodic forcing in space - stress-controlled flow - $\sigma_{\rm P} \simeq \sigma_{\rm Y}$

Yielding is not a stationary phenomenon! How to characterize such behaviour?

*R. Benzi, ML & M. Sbragaglia arXiv:1710.00686 [cond-mat.soft] (under review at PRX)

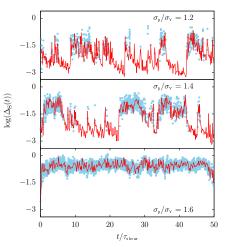
Yield-stress transition*: Metastability and Hysteresis



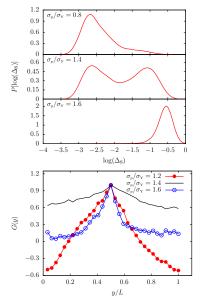
Elastic waves hamper u_s signal, let's look at displacements...

*R. Benzi, ML & M. Sbragaglia arXiv:1710.00686 [cond-mat.soft] (under review at PRX)

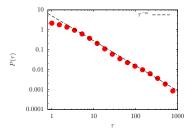
Yield-stress transition*: Displacements Analysis


Flow properties linked to droplets displacements: $\vec{\Delta}_i = \vec{x}_i(t) - \vec{x}_i(t - \delta t)$,

• We are interested in extreme events



Clear link to plastic events! (blue dots)


^{*}R. Benzi, ML & M. Sbragaglia arXiv:1710.00686 [cond-mat.soft] (under review at PRX)

Yield-stress transition: Bimodality and Correlations

Results robust for realistic flows

- Repeated transitions in time from solid to fluid phase and back
- \bullet Bimodal probability distribution for $\log(\Delta_{\text{S}})$
- Qualitatively different from stick-slip (!)

- Largest correlations (dynamic heterogeneities) at bimodality
- Trapping time with power-law distribution (as in sheared *p*-spin glasses)

Matteo Lulli

Conclusions & Perspectives

Controlled Fluidization^a

^aL. Derzsi, D. Filippi, G. Mistura, M. Pierno, ML, M. Sbragaglia, M. Bernaschi & P. Garstecki, *Phys. Rev. E*, **95**, 052602 (2017) + (under review *Soft Matt.*)

- 1) First systematic experimental study of wall roughness
- 2) Scaling law for fluidization as λ^{-1}
- 3) According to g: Trapped vs. Get-in-get-out
- 4) First ab initio characterization of droplets dynamics fluctuations
- 5) Study the interplay between boundary and elasticity

Yield-stress transistion^b

- ^bR. Benzi, ML & M. Sbragaglia arXiv:1710.00686 [cond-mat.soft] (under review at PRX)
- 1) In a stress-driven flow yielding is not stationary
- 2) System intermittently tunnels from a solid to a fluid phase and back
- 3) Largest Dynamic Heterogeneity & power-law trapping time distribution at bimodality
- 4) Close relation to mean-field spin glasses phenomenology

HPC research^{\dagger} and resources crucial for these results

[†]M. Bernaschi, ML & M. Sbragaglia, *Comp. Phys. Comm.*, **213**, 19 - 28 (2017)

Conclusions & Perspectives

