

Geant4 simulations of a Proton Recoil Telescope for the measurement of the n_TOF neutron flux between 100 MeV and 1 GeV

Lucia Anna Damone

102° Congresso Nazionale - Società italiana di Fisica

Outline

- Aims
- Procedure
- Geant4 Simulations
- Results
- Conclusions

- Measurement of the n_TOF neutron flux from 200 MeV up to 1 GeV
- Measurement of the ²³⁵U(n,f) cross section above 200 MeV

Aims

scattering reaction.

Procedure

scattering reaction.

Procedure

scattering reaction.

Procedure

scattering reaction.

Procedure

scattering reaction.

• $\Delta E - E$ method to identify protons

Background

Procedure

scattering reaction.

• $\Delta E - E$ method to identify protons

Background

Procedure

scattering reaction.

• $\Delta E - E$ method to identify protons

Background

Procedure

scattering reaction.

• $\Delta E - E$ method to identify protons

Background

Procedure

scattering reaction.

• $\Delta E - E$ method to identify protons

Background

- High energy p → thick detectors → interaction of scattered neutrons with H and C in the scintillators
- CH_2 radiator $\rightarrow n+C \rightarrow p$

Procedure

scattering reaction.

• $\Delta E - E$ method to identify protons

Background

- High energy p → thick detectors → interaction of scattered neutrons with H and C in the scintillators
 C+H
- CH_2 radiator $\rightarrow n+C \rightarrow p$

CH₂ radiator

n

Procedure

scattering reaction.

• $\Delta E - E$ method to identify protons

CH₂ radiator

n

Geant4 simulations

- Several telescope configurations simulated
- Trapezoidal geometry → **Defined solid angle**

Detector name	Position	Thickness	First Trapezium Face (mm ²)	Second Trapezium Face (mm ²)
Silicon1	1 st	300 µm	30 x 30	30 x 30
Silicon2	2 nd	300 µm	30 x 30	30 x 30
Silicon3	3 rd	300 µm	30 x 30	30 x 30
Silicon4	4 th	200 µm	30 x 30	30 x 30
Scintillator1	5 th	5 mm	32.75 x 32.75	34 x 34
Scintillator2	6 th	30 mm	34.25 x 34.25	41.75 x 41.75
Scintillator3	7 th	60 mm	42 x 42	57 x 57
Scintillator4	8 th	60 mm	57.25 x 57.25	72.25 x 72.25

Geant4 simulations

- Several telescope configurations simulated
- Trapezoidal geometry → <u>Defined solid angle</u>

• **PWO** and **LaBr** scintillator have been tested

Geant4 simulations

- Several telescope configurations simulated
- Trapezoidal geometry → <u>Defined solid angle</u>

PWO and LaBr scintillator have been tested
 p stopped up to 250 MeV: no way
 to stop higher energy *p*

Geant4 simulations

- Several telescope configurations simulated
- Trapezoidal geometry → <u>Defined solid angle</u>

- PWO and LaBr scintillator have been tested
 p stopped up to 250 MeV: no way
 to stop higher energy *p*
- Choise → plastic scintillators: *p* stopped up to 150 MeV but they are faster.

DeltaE_vs_E

• Neutron beam E=250 MeV

 Although this configuration does not stop the *p* above 150 MeV the signal is well separated from the background

DeltaE_vs_E

• Neutron beam E=250 MeV

 Although this configuration does not stop the *p* above 150 MeV the signal is well separated from the background

DeltaE_vs_E

• Neutron beam E=250 MeV

 Although this configuration does not stop the *p* above 150 MeV the signal is well separated from the background

 $n+p \rightarrow n \rightarrow$ interaction with the Carbon in the detectors

 Neutron beam and proton beam of 250 MeV impinging directly on the PRT

 $n+p \rightarrow n \rightarrow$ interaction with the Carbon in the detectors

• Neutron beam and proton beam of 250 MeV impinging directly on the PRT

Selection of proton signal

 $n+p \rightarrow n \rightarrow$ interaction with the Carbon in the detectors

Background percentage

Comparison between the two methods

Neutron Energy	Signal/backgr with no p selection	Signal/backgr with p selection
100	28.79	690
150	23.46	410
250	25.92	834
350	21.54	419.85
500	17.29	436.89
750	14.13	254.34
1000	13.84	182.24

 CH_2 radiator \rightarrow n+C \rightarrow p

Neutron beam of 250 MeV impinging on a *CH*₂ radiator

Neutron beam of 250 MeV impinging on a **C** radiator

 CH_2 radiator \rightarrow n+C \rightarrow p

After the selection of proton signal ...

Carbon Background

Neutron Energy	Carbon Background (%)
100	11.55
150	12.53
250	34.27
350	49.36
500	56.07
750	65.31
1000	72.20

Multiple scattering of protons in the detectors \rightarrow additional background and change in the efficiency

Neutron beam of 250 MeV impinging on a H_2 radiator

Efficiency: ratio between the protons in the peak and total incident protons on the PRT

- The measurement is **difficult** (especially close to 1 GeV) but **feasible**
- PRT configuration simulated also with the whole n_TOF energy spectra
 →the conclusions are the same.
- Simulations indicate that there are background problems at high energies due to interactions of neutrons with the carbon in the radiator.
 Future GOAL: refine the analysis and especially measure the background with a pure carbon target!

Conclusions

• Next step: TEST under the beam to verify the simulations

Thank you for your kind attention