ON THE HIGH-ENERGY ICECUBE NEUTRINOS

Sergío Palomares-Ruíz IFIC, CSIC-U. Valencia

Perspectives in astroparticle physics from high energy neutrinos

Naples, June 26, 2017

ISICA Sergio Palomares-Ruiz

WHY DO WE CARE ABOUT FLAVOR?

WHY DO WE CARE ABOUT FLAVOR?

It carries information about the mechanism of production...

WHY DO WE CARE ABOUT FLAVOR?

It carries information about the mechanism of production...

...but also about the way neutrinos propagate from the sources to the detector

Exotic physics could produce deviations from the standard expectations

STANDARD COSMIC PROPAGATION

$$flavor ratios at source:$$

$$(\alpha_{es}:\alpha_{\mu,s}:\alpha_{\tau,s})$$

$$flavor ratios at Earth:$$

$$(\alpha_{e,\oplus}:\alpha_{\mu,\oplus}:\alpha_{\tau,\oplus})$$

$$\{\alpha_{j,\oplus}\} = \sum_{k,i} |U_{jk}|^2 |U_{ik}|^2 \{\alpha_{i,s}\}$$
Neutrino
$$\left|U_{jk}\right|^2 |U_{ik}|^2 \approx \left(P_{IBM}\right)_{ji} = \frac{1}{18} \begin{pmatrix} 10 & 4 & 4 \\ 4 & 7 & 7 \\ 4 & 7 & 7 \end{pmatrix}$$

INSTITUT DE FÍSICA CORPUSCULAR Sergio Palomares-Ruiz

 \mathbf{b}

k

FLAVOR RATIOS AT SOURCE AND EARTH Pion sources $(v_e:v_\mu:v_\tau)_s = (1:2:0) \Rightarrow (v_e:v_\mu:v_\tau)_{\oplus} = (1:1:1)$ Muon damped $(v_e:v_\mu:v_\tau)_s = (0:1:0) \Rightarrow (v_e:v_\mu:v_\tau)_{\oplus} = (4:7:7)$ sources Muon sources $(v_e: v_\mu: v_\tau)_s = (1:1:0) \Rightarrow (v_e: v_\mu: v_\tau)_{\oplus} = (14:11:11)$ Neutron sources $(v_e:v_\mu:v_\tau)_s = (1:0:0) \Rightarrow (v_e:v_\mu:v_\tau)_{\oplus} = (5:2:2)$ $n \rightarrow p + e^- + \overline{V}_e$

FLAVOR TRIANGLES Eden = 10 TeV, 10 PeV

4-YEAR DATA

INCOHERENT MIXTURE OF MASS EIGENSTATES

neutrino decays, pseudo-Dirac neutrinos... or neutrino secret interactions, Planck-scale decoherence

M. Bustamante, J. F. Beacom and W. Winter, Phys. Rev. Lett. 115:161302, 2015

🗛 Sergio Palomares-Ruiz

MORE EXTREME SCENARIOS

Using effective operators: general evolution hamiltonian

flavor structure of new physics

n=0 : neutrino couplings to spacetime torsion, CPT-odd Lorentz violation, NSI n=1 : CPT-even Lorentz violation, equivalence principle violation

 $H = \frac{1}{2E} UM^2 U^{\dagger} + \sum_{n} \left(\frac{E}{\Lambda}\right)^n \tilde{U}_n O_n \tilde{U}_n$

IT DE FÍSICA Sergio Palomares-Ruiz

$\frac{(1-y)^{2} \left[1-(m_{\mu}^{2}-m_{e}^{2})/2m_{e}E_{\nu}\right]}{(1-2m_{e}E_{\nu}/M_{W}^{2})^{2}+\Gamma_{W}^{2}/M_{W}^{2}}$ **EFFECT OF HIGH-ENERG**

0.9

0.8

0.7

0.5

0.4

0.8

0.3

0.2

0.9

0.1

0

0.1

0.2

0.3/

 $\sigma(cm^2)$

3-YEAR DATA

°, ⊗°,

0.5

0.6

0.2

0.3

0.7

0.8

0.1

0.9

ď

$$E_R = M_W^2 / 2m_e \approx 6.3 \text{ PeV}$$

Not enough tracks

→ no muon neutrínos

No GR events

→ no electron neutrínos

Pure Ve SPR, A. C. Vincent and O. Mena, Phys. Rev. D91:103008, 2015

0.5

 $lpha_{e,\oplus}$

0.6

0.7

0.4

Pure Vr

Edep = 60 TeV, 10 PeV

0.9

0.8

0.7

0.5

0.3

0.2

0.1

0.4

OD

EX

clusic

 $log_{10}(E_{y}, GeV)$

INSTITUT DE FÍSICA Sergio Palomares-Ruiz

ENERGY DISTRIBUTION OF HESE

SPR, A. C. Vincent and O. Mena, Phys. Rev. D91:103008, 2015

INSTITUT DE FÍSICA Sergio Palomares-Ruiz

EFFECT OF TRACK MISID $E_{dep} = [60 \text{ TeV}, 10 \text{ PeV}]$

SPR, A. C. Vincent and O. Mena, Phys. Rev. D91:103008, 2015

EFFECT OF TRACK MISID

 $E_{dep} = [60 \text{ TeV}, 10 \text{ PeV}]$

3-yr IceCube analysis

SPR, A. C. Vincent and O. Mena, Phys. Rev. D91:103008, 2015 M. G. Aartsen et al. [Icecube Collaboration], Phys. Rev. Lett. 114:171102, 2015

EFFECT OF TRACK MISID

Edep = 60 TeV, 10 PeV

3-yr IceCube analysis

SPR, A. C. Vincent and O. Mena, Phys. Rev. D91:103008, 2015 M. G. Aartsen et al. [Icecube Collaboration], Phys. Rev. Lett. 114:171102, 2015

Differences between the IceCube analysis and

O. Mena, SPR and A. C. Vincent (PRL113:091103, 2014) are mainly due to extending the deposited energy range to cover the Glashow resonance (+ track misID)

III STITUT DE FÍSICA INSTITUT DE FÍSICA Sergio Palomares-Ruiz

TWO POWER-LAW SPECTRA

A. C. Vincent, SPR and O. Mena, Phys. Rev. D94:023009, 2016

INSTITUT DE FÍSICA Sergio Palomares-Ruiz

TWO POWER-LAW SPECTRA

A. C. Vincent, SPR and O. Mena, Phys. Rev. D94:023009, 2016

INSTITUT DE FÍSICA Sergio Palomares-Ruiz

TWO POWER-LAW SPECTRA

A. C. Vincent, SPR and O. Mena, Phys. Rev. D94:023009, 2016

INSTITUT DE FÍSICA Sergio Palomares-Ruiz

4-YEAR DATA

SINGLE POWER-LAW FLUX

TWO POWER-LAW FLUX

Sergio Palomares-Ruiz

4-YEAR DATA

SINGLE POWER-LAW FLUX

TWO POWER-LAW FLUX

Sergio Palomares-Ruiz

TWO POWER-LAW FLUX

$$E_{\nu}^{2} \frac{d\Phi}{dE_{\nu}} \bigg|_{BF} = \left[13.8 \left(\frac{E_{\nu}}{100 \text{ TeV}} \right)^{-1.89} + 2.7 \left(\frac{E_{\nu}}{100 \text{ TeV}} \right)^{-0.25} \right] \times 10^{-8} \text{ GeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1}$$

consistent with the through-going muons best fit Adapted from: A. C. Vincent, SPR and O. Mena, Phys. Rev. D94:023009, 2016

INSTITUT DE FÍSICA CORPUSCULAR Sergio Palomares-Ruiz

4-YEAR DATA

On the high-energy IceCube neutrinos

 sr^{-1}

TWO POWER-LAW FLUX

IFFIC INSTITUT DE FÍSICA CORPUSCULAR Sergio Palomares-Ruiz

4-YEAR DATA

POWER-LAW FLUX + DM DECAY

TWO POWER-LAW FLUX

Data

Total 2pow best fit (60 TeV - 10 PeV)

atm. µ 2pow best fit (60 TeV - 10 PeV)

atm. v 2pow best fit (60 TeV - 10 PeV)

astro v 2pow best fit (60 TeV - 10 PeV)

Total IC best fit (60 TeV- 10 PeV)

 10^{3}

 10^{4}

 $\times 10^{-8} \text{ GeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$

Sergio Palomares-Ruiz INSTITUT DE FÍSICA

On the high-energy IceCube neutrinos

consistent with the

TWO POWER-LAW FLAVOR

A. C. Vincent, SPR and O. Mena, Phys. Rev. D94:023009, 2016

Sergio Palomares-Ruiz

RECENT 6-YR HESE

Deposited EM-Equivalent Energy in Detector (TeV)

Two power-law spectrum is just a bit better than a single power-law

J. van Santen ICRC2017

Using SIBYLL 2.1 and DPMJET 2.55

S. Schönert, T. Gaísser, E. Resconí and O. Schulz, Phys. Rev. D79:043009, 2009 T. Gaísser, K. Jero, A. Karle, J. Van Santen, Phys. Rev. D90:023009, 2014

Using SIBYLL 2.1 and DPMJET 2.55

S. Schönert, T. Gaísser, E. Resconi and O. Schulz, Phys. Rev. D79:043009, 2009 T. Gaísser, K. Jero, A. Karle, J. Van Santen, Phys. Rev. D90:023009, 2014

J. van Santen ICRC2017

Some neutrinos

are absorbed in the Earth

 $prompt \nu_{\mu} + \nu_{e}$

CORVERTION al

CONVERTIONAL L

 10^{1}

 10^{0}

 10^{-1}

 10^{-2}

100 TeV

Λ

Е

Уſ

 sr^{-1}

 km^{-3}

astrophysical ν

self-veto

INSTITUT DE FÍSICA Sergio Palomares-Ruiz

J. van Santen ICRC2017

J. van Santen ICRC2017

atmospheric muon background

So far only provided as a constant fraction: 30% for HESE

M. G. Aartsen et al. [Icecube Collaboration], Phys. Rev. Lett. 114:171102, 2015

it must be energy-dependent: it affects energy distributions

SPR, A. Vincent and O. Mena, in preparation

too large normalization as compared to observed events

C. Kopper [IceCube Collaboration], PoS (ICRC2017) 981

🗛 Sergio Palomares-Ruiz

ergy IceCube net

D. Seckel, Phys. Rev, Lett. 80:900, 1998 1. Alikhanov, Phys. Lett. 741:295, 2015; Phys. Lett. 756:247, 2016

Sergio Palomares-Ruiz

extra SM contribution: Hidden Glashow resonance

up to 10% effect in detection >10% effect in absorption in the Earth effect in the energy and flavor distributions

C. Argüelles, SPR and M. H. Reno, in preparation

CONCLUSIONS

Flavor triangle is important for searches of exotic physics: degeneracies with energy spectrum

◆ Potential issues in current data (assuming an unbroken power-law):
 → Low-energy excess... multicomponent flux? very soft spectrum?
 → Deficit of electron antineutrinos E>PeV... spectral break? flavor?
 → Tension with through-going muon data... multicomponent flux?

Other inputs could affect the results: self-veto uncertainties, track misID energy dependence, muon background, hidden Glashow resonance contribution

4-YEAR DATA

UP/DOWN

Adding through-going muons: harder spectrum from the North at 1.1σ

M. G. Aartsen et al. [Icecube Collaboration], Astrophys. J. 809:98, 2015

UPGOING NEUTRINOS

DOWNGOING NEUTRINOS

A. C. Vincent, SPR and O. Mena, Phys. Rev. D94:023009, 2016

INSTITUT DE FÍSICA CORPUSCULAR Sergio Palomares-Ruiz

4-YEAR DATA

UP/DOWN

Adding through-going muons: harder spectrum from the North at 1.1σ

M. G. Aartsen et al. [Icecube Collaboration], Astrophys. J. 809:98, 2015

UPGOING NEUTRINOS

DOWNGOING NEUTRINOS

A. C. Vincent, SPR and O. Mena, Phys. Rev. D94:023009, 2016

INSTITUT DE FÍSICA Sergio Palomares-Ruiz

NEUTRINO/ANTINEUTRINO

Important with higher statistics

H. Nunokawa, B. Panes and R. Z. Funchal, JCAP 1610:036, 2016

A. C. Vincent, SPR and O. Mena, Phys. Rev. D94:023009, 2016

4-YEAR DATA

NEUTRINO/ANTINEUTRINO

Important with higher statistics

H. Nunokawa, B. Panes and R. Z. Funchal, JCAP 1610:036, 2016

Strong correlation: too early to reach any conclusion

A. C. Vincent, SPR and O. Mena, Phys. Rev. D94:023009, 2016

4-YEAR DATA