Particle Physics with Neutrino Telescopes

Carlos de los Heros, Uppsala University

Workshop on Perspectives in Astroparticle Physics from High Energy Neutrinos Naples, September 25-26, 2017.

high-energy neutrino telescopes

high-energy neutrino telescopes

Detect Cherenkov light of interaction products

$\begin{array}{c} X \\ \nu_{\mu} \\ \mu \end{array} \psi \sim 1^{\circ} \\ \mu \end{array}$

array of optical modules in a transparent medium

signature in the detector

amount of light \propto energy

neutrino beams in neutrino telescopes

neutrino beams in neutrino telescopes

Both IceCube and KM3NET have, or plan to have, low-E extensions (DeepCore, PINGU, ORCA) to cover as low ν energies as possible

particle physics topics with neutrino telescopes

NEUTRINO CROSS SECTION

TESTS OF FUNDAMENTAL LAWS

NEUTRINO OSCILLATIONS

Check the contributions to the latest Workshop on Exotic Physics with Neutrino Telescopes for more ideas, indico.in2p3.fr/event/7381/

backgrounds: the new signal

the atmospheric neutrino flux

An enormous wealth of information can be obtained from the energy and pathlength of atmospheric neutrinos through the Earth to the detector

Neutrinos available over a wide range of baselines, with energies from a few GeV to ~100 TeV.

neutrino oscillations

NTs can cover L/E regions unaccessible to accelerators

Best fit: $\Delta m^2_{32} = 2.31^{+0.11}_{-0.13} \times 10^{-3} \, \text{eV}^2$, $\sin^2 \theta_{23} = 0.51^{+0.07}_{-0.09}$

Minimal 3+1 scenario adds 6 parameters: Δm_{41}^2 , θ_{14} , θ_{24} , θ_{34} , δ_{14} and δ_{34}

additional state to oscillate to \rightarrow perturbation to standard oscillations

From solar, atmospheric and accelerator results: mixing with s must be small, $|U_{a4}| \ll 1$

NTs sensitive to disappearance effects in atmospheric neutrinos, ie, mainly to Δm_{41}^2 and $\sin 2\theta_{24}$

So far, results consistent with the standard three-neutrino hypothesis

- LED ⇒ "sterile" neutrinos living in the extra dimensions (KK-tower)
- mixing with of KK modes with active neutrinos distorts standard oscillation pattern
- R_{D} and m_{1} (lowest KK mode) can be constrained from oscillation analyses

neutrino cross section

- Neutrino Xsection only measured below ~300 GeV
- Neutrino telescopes exposed to copious neutrino flux above TeV
- Look for deviations of expected flux due to anomalous neutrino interactions in matter

IceCube search:

fit $\nu_{_{\mu}}$ angle and energy distribution with $\sigma_{_{\!\nu\mu}}$ as free parameter.

IceCube preliminary

log₁₀(E_v [GeV])

4.5

5.5

6.5

3.5

Data

2.5

0.1

0.0

1.5

non-standard neutrino interactions (NSI)

- Additional disappearance effect to MSW
- Mediated by non-SM bosons.

$$H_{\alpha\beta} = \frac{1}{2E} U_{\alpha j} \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{pmatrix} (U^{\dagger})_{k\beta} + V_{\rm MSW} + \sqrt{2}G_F N_f \begin{pmatrix} \varepsilon_{ee} & \varepsilon_{e\mu} & \varepsilon_{e\tau} \\ \varepsilon_{e\mu} & \varepsilon_{\mu\mu} & \varepsilon_{\mu\tau} \\ \varepsilon_{e\tau} & \varepsilon_{\mu\tau} & \varepsilon_{\tau\tau} \end{pmatrix}$$

standard MSW NSI

- \rightarrow 9 additional "interaction terms"
- (6, if requirements of hermicity and unitarity are imposed)
- Modify the rate of neutrinos detected at different energies and angles
- Effect proportional to LxE
- Shows in complementary range of parameter space wrt standard oscillations

non-standard neutrino interactions (NSI)

So far, results from IceCube and SK compatible with no NSI

(see also MINOS results, Phys. Rev. D 88, 072011 (2013))

 Low-energy "Double-bang" events from heavy neutrino production and decay, without intermediate track

$$\nu_{\alpha L} = \sum_{i=1}^{3} U_{\alpha i} \nu_{iL} + U_{\alpha 4} N_{4R}^c$$

additional mixing matrix components that can be probed

• $|U_{_{\tau 4}}|^2$ up to ~10⁻² still allowed for a window of masses

•
$$m_N \ge 1 \text{ GeV} \rightarrow L_{\text{detector}} \ge 20 \text{ m}$$

...or search for heavy neutral mediators

• Simultaneous double μ tracks from ν -N interactions with new vector (Z') or scalar (S') mediators,

- \bullet Wide range of allowed Z'/S' mass: $\sim MeV$ to TeV and couplings.
- Parameter space of the new mediator can be constrained

violation of Lorentz invariance

• Leads to modified dispersion relation:

 $E_a^2 = p_a^2 c_a^2 + m_a^2 c_a^2$

- Different maximum attainable velocities c_a for different flavour states: $\Delta E \sim (\delta c/c)E$
- "oscillation" effect $\propto~\text{L}\times\text{E}$ instead of L/E

quantum decoherence

- Signature of quantum gravity
- Heuristic picture: foamy structure of space-time. Pure states interact with environment

$$E_a^2 = p_a^2 + m_a^2 + f_a(p, E)$$

• "oscillation" effect
$$\propto E^n$$
 (n=1,2,3...)

could have consequences for timing in multimessenger searches

in the SME

$$H_{\alpha\beta} = \frac{1}{2E} U_{\alpha j} \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{pmatrix} (U^{\dagger})_{k\beta} + V_{\rm MSW} + \frac{p_{\lambda}}{E} \begin{pmatrix} a_{ee}^{\lambda} & a_{e\mu}^{\lambda} & a_{e\tau}^{\lambda} \\ a_{e\mu}^{\lambda^*} & a_{\mu\mu}^{\lambda} & a_{\mu\tau}^{\lambda} \\ a_{\mu\tau}^{\lambda^*} & a_{e\tau}^{\lambda^*} & a_{\tau\tau}^{\lambda} \end{pmatrix} - \frac{p_{\lambda} p_{\sigma}}{E} \begin{pmatrix} c_{ee}^{\lambda\sigma} & c_{e\mu}^{\lambda\sigma} & c_{e\tau}^{\lambda\sigma} \\ c_{e\mu}^{\lambda\sigma^*} & c_{\mu\tau}^{\lambda\sigma} & c_{\mu\tau}^{\lambda\sigma} \\ c_{\mu\tau}^{\lambda\sigma^*} & c_{e\tau}^{\lambda\sigma^*} & c_{\tau\tau}^{\lambda\sigma} \end{pmatrix}$$

LVI terms

MSW

(arXiv:1608.02946)

standard

magnetic monopoles

$$\vec{\nabla} \cdot \vec{E} = 4\pi\rho_e \qquad \vec{\nabla} \cdot \vec{B} = 4\pi\rho_m \qquad -\vec{\nabla} \times \vec{E} = \frac{1}{c} \frac{\partial \vec{B}}{\partial t} + \frac{4\pi}{c} \vec{j}_m \qquad \vec{\nabla} \times \vec{B} = \frac{1}{c} \frac{\partial \vec{E}}{\partial t} + \frac{4\pi}{c} \vec{j}_e$$

• Predicted from charge quantization (Dirac):

elementary charge $g_D = \frac{\alpha}{2} e \approx 68.5 e$

• Most GUTs predict them

mass range: $\sim 10^7 \text{ GeV} \leq \text{m}_{\text{M}} \leq 10^{19} \text{ GeV}$

• Typical galactic B-fields (μ G) and galactic sizes (kpc) can accelerate MMs to

$$K = g_d \int_{path} B \cdot dl \simeq g_D B l \approx 10^{12} GeV$$

• MMs with masses below $\leq 10^{12}$ GeV can be relativistic

• Different signatures in NTs, depending on speed, but always track-like

magnetic monopoles

slow (β≦0.1c)

light from EM showers of p-decay products $\sigma_{cat} = \sigma_{cat} (\beta) = \sigma_0 / \beta$

Estimated: $10^{-21} \text{ cm}^2 < \sigma_{CAT} < 10^{-27} \text{ cm}^2$

Mean free path between p-decays: 1/ $\sigma_{_{\rm CAT}}$

Long passage time (~ms) \rightarrow detector noise

"mildly relativistic" ($0.2c \leq \beta \leq 0.5c$)

isotropic light from luminescence due to electronic excitation-deexcitation

dim events

access to "intermediate" β range

relativistic

direct Cherenkov light ($\beta \gtrsim 0.75c$) or from secondary δ electrons ($\beta \gtrsim 0.6c$)

Vey bright events (g~68e).

Nb. of Cherenkov photons x8200 min ionizing muon

current results

nuclearites & strangelets

```
• QCD allows for neutral, stable "chunks"
```

of strange matter (u, d, s)

```
stranglets \rightarrow mass \mathcal{O}(\text{heavy nuclei})
```

nuclearites \rightarrow mass >> standard nuclei ($\gtrsim 10^{10}$ GeV)

- Neutral \Rightarrow difficult to accelerate
- Gravitationally trapped in the galaxy $\Rightarrow \beta \sim 10^{-3}$
- \rightarrow non-relativistic: elastic collisions along their path
- Heat matter locally as they traverse it →
 light from a cylindrical expanding thermal shock wave
- \Rightarrow signature in a NT as a slow, bright track

searches dark matter

$$\begin{array}{c} DM \\ \hline \\ M^{-}, Z, b, \tau^{-}, t, h \dots \\ primary \\ channels \\ M^{+}, Z, \bar{b}, \tau^{+}, \bar{t}, h \dots \\ \end{array} \xrightarrow{} e^{\mp}, \begin{pmatrix} \bar{p} \end{pmatrix}, \begin{pmatrix} - \\ D \end{pmatrix} \dots \end{pmatrix}, \forall, \forall \dots \\ final \\ products \\ e^{\pm}, \begin{pmatrix} - \\ p \end{pmatrix}, \begin{pmatrix} - \\ D \end{pmatrix} \dots \end{pmatrix}, \forall, \forall \dots \\ e^{\pm}, \begin{pmatrix} - \\ p \end{pmatrix}, \begin{pmatrix} - \\ D \end{pmatrix} \dots \end{pmatrix}, \forall, \forall \dots \\ e^{\pm}, \begin{pmatrix} - \\ p \end{pmatrix}, \begin{pmatrix} - \\ D \end{pmatrix} \dots \end{pmatrix}$$

$$\Phi_{\mu} \rightarrow \Gamma_{A} \rightarrow C_{C} \rightarrow \sigma_{\chi p}$$

$$\Phi_{\mu} \rightarrow \Gamma_{A} \rightarrow \sigma_{\chi\chi}$$

dark matter searches beyond MSSM

Possibility to test more exotic scenarios than the plain MSSM neutralino:

log M_X (GeV)

Plus many more...

Rich particle physics program for neutrino telescopes (I skipped many topics)

Complementary in many aspects to accelerator physics

NT's have access to a high-statistics, high-energy neutrino beam (atm. neutrinos)

NT's are sensitive to other highly ionizing particles besides muons \rightarrow monopoles...

The old adage is rapidly coming true: yesterday's signals are today's backgrounds Astrophysical neutrinos constitute a background for some of the mentioned topics They open the window to cosmological distances and >PeV energies

IceCube searches for dark matter

 $\Phi_{\mu} \rightarrow \Gamma_{A} \rightarrow C_{c} \rightarrow \sigma_{\chi p}$

 $\Phi_{\mu} \rightarrow \Gamma_{A} \rightarrow \sigma_{\chi\chi}$

 $\frac{\mathrm{d}\phi_{\mathbf{v}}}{\mathrm{d}E} = \frac{\langle \sigma_{\mathrm{A}} \mathbf{v} \rangle}{2} \frac{1}{4\pi \, m_{\chi}^2} \, J_{\mathrm{a}}(\psi) \, \frac{\mathrm{d}N_{\mathbf{v}}}{\mathrm{d}E}$