## **Neutrinos from Gamma-Ray Bursts ...**

... and tests of the UHECR paradigm

Walter Winter DESY, Zeuthen, Germany

Perspectives in Astroparticle physics from High Energy Neutrinos (PAHEN 2017) Napoli, Italy

September 25-26, 2017









#### Contents

#### Introduction

- Neutrino constraints for one zone model for GRB prompt emission
- > Towards improved multi-messenger models:
  - Impact of nuclei (instead of protons)
  - Multi-zone models
- > Can GRBs power the diffuse neutrino flux?
- Summary and conclusions



#### **Multi-messenger astrophysics**



Focus on GRB origin of cosmic rays at extremest energies



#### Gamma-ray bursts (GRBs)

- Most energetic electromagnetic (gamma-ray) outburst class
- Several populations, such as
  - Long-duration bursts (~10 100s), from collapses of massive stars?
  - Short-duration bursts (~ 0.1 1 s), from neutron star mergers?
  - Typical redshift ~ 1-3 (cosmological distances)
  - Observed light curves come in large variety



**Daniel Perley** 

Source: NASA

t<sub>v</sub>: variability timescale

#### **GRB** - Internal shock model



#### **Neutrino production efficiency in GRBs** ... from geometry estimators

Need photon density, which can be obtained from energy density. Rather model-independently:

$$u_{\gamma}' \equiv \int \varepsilon' N_{\gamma}'(\varepsilon') \mathrm{d}\varepsilon' = \frac{L_{\gamma} \Delta d'/c}{\Gamma^2 V_{\mathrm{iso}}'} = \frac{L_{\gamma}}{4\pi c \Gamma^2 R^2}$$

Scales ~1/R<sup>2</sup> from simple geometry arguments

 $V_{\rm iso}' = 4\pi R^2 \cdot \Delta d'$ 

> Magnetic re-connection models: est. for R from pulse timescale (larger)

- *Photospheric emission: R* corresponds to photospheric radius
- *Multi-zone models*: R and  $\Delta d'$  individually calculated for each collision
- Production radius R and luminosity L<sub>γ</sub> are the main control parameters for the neutrino production [ $t_v$  does not vary as much as  $L_y$ ]

Walter Winter | PAHEN 2017 | Sept. 25-26, 2017 | Page 6

e.g. He et al, 2012; Zhang, Kumar, 2013; Biehl et al, arXiv:1705.08909 (Sec. 2.5) for detail

#### **Multimessenger stacking bounds**



+100





NeuCosmA 2011

Waxman, Bahcall, 1997; Guetta et al, 2003

Fig. from update: arXiv:1702.06868

#### **Generic constraints: Neutron model**

- >  $\Delta$ -resonance picture:  $p + \gamma \rightarrow \Delta^+ \rightarrow \begin{cases} n + \pi^+ & 1/3 \text{ of all cases} \\ p + \pi^0 & 2/3 \text{ of all cases} \end{cases}$  (simplified)
- Assume that these neutrons escape and are the UHECRs: Fit to UHECR data (implies high baryonic loading)



Ahlers, Gonzalez-Garcia, Halzen, Astropart. Phys. 35 (2011) 87



CR

## Challenge: How do cosmic rays escape from the source?

3<sup>3</sup>J [eV<sup>2</sup> km<sup>-2</sup> sr

#### Neutron model

Only neutrons can escape

- Direct escape (aka "high pass filter", "leakage", …) Charged cosmic rays can efficiently escape if Larmor radius reaches size of region (conservative escape contribution, green curve, hard) (predicted in: Baerwald et al, ApJ 768 (2013) 186) →
- All escape, advective/free-streaming escape (most aggressive scenario, dashed curve, ~ E<sup>-2</sup>)
- Diffusive escape: e. g. Escape rate ~ (R<sub>L</sub>)<sup>α</sup>
  (compromise, but highly assumption dependent)
  e.g. Unger et al, 2015; Kachelrieß et al, 2017; Fang, Murase, 2017; ...
- Current Auger best-fit supports direct escape hypothesis (requires E<sup>-1</sup> from sources); possibly neutrons below ankle? (e. g. Unger, Farrar, Anchordoqui, 2015)



(GRB, protons, without propagation effects)



20 log\_(E/eV) ' | Sept. 25-26, 2017 | **Page 9** 



### **Combined source-propagation model**

- Baryonic loading (f<sub>e</sub><sup>-1</sup>) is obtained by the fit to UHECR data (no input!)
- > GRBs can be the sources of the UHECRs depending on parameters
- Neutrino bounds translate into parameter space constraints (e.g. R, L<sub>iso</sub>)



Baerwald, Bustamante, Winter, Astropart. Phys. 62 (2015) 66; here figures with TA data

Walter Winter | PAHEN 2017 | Sept. 25-26, 2017 | Page 10



#### Auger global fit



# Caveat 1: UHECRs are not dominated by protons ...

Hard spectra from sources  $\gamma \sim 1$  (best-fit).

Elements up to silicon from sources



Auger global fit, 1612.07155

## **Development of nuclear cascade: disintegration models**

Disintegration of <sup>56</sup>Fe within a GRB shell collision (L<sub>γ</sub>=10<sup>52</sup> erg/s) Boncioli, Fedynitch, Winter, Scientific Reports, 7 (2017) 4882



TALYS 1.8, CRPropa 2 (low mass isotopes)

> Abundant production of nucleons, α particles, light nuclei (consequences for UHECR composition, neutrinos)



#### Nuclear cascade: Dependence on "control" parameters



arXiv:1705.08909;

see also Murase et al, 2008; Anchordoqui et al, 2008 Walter Winter | PAHEN 2017 | Sept. 25-26, 2017 | Page 13



## **Composition dependence of neutrino fluence from GRBs**

The neutrino fluence (per shell) hardly depends on the injection composition

[Consequence of E<sup>-2</sup> injection, conserved energy per nucleon in the disintegration chain, magnetic field effects on secondaries, and interaction rate flat in energy above threshold]



The neutrino bounds on GRBs will roughly apply if UHECRs are nuclei (propagation effects modify required injection rate, though ...)

Biehl, Boncioli, Fedynitch, WW, arXiv:1705.08909



#### Combined (one zone) source-propagation model (internal shock scenario): Description of Auger data with <sup>28</sup>Si injection into GRB only

#### Mixed composition dip model



Biehl, Boncioli, Fedynitch, WW, arXiv:1705.08909



#### Combined (one zone) source-propagation model (internal shock scenario): Description of Auger data with <sup>28</sup>Si injection into GRB only



Biehl, Boncioli, Fedynitch, WW, arXiv:1705.08909



## Caveat 2: The one zone assumption is possibly too simplistic



## The GRB emission comes from multiple zones



The different messengers originate from different regimes of the same GRB where the photon densities are very different

#### > More fundamental problems implies?

- Quantities inferred from γ-ray observations not representative for neutrinos and UHECRs?
- Neutrinos and cosmic rays come from different regions or objects? (e. g. AGNs over blazar sequence)
  Walter Winter | PAHEN 2017 | Sept. 25-26, 2017 | Page 18



#### **Consequences for neutrino production**





- Can be used to predict a → "minimal" (+robust wrt. geometry estimators) super-photospheric neutrino flux → IceCube-Gen2? E<sup>2</sup> \u03c6 ~ 10<sup>-11</sup> GeV cm<sup>-2</sup> s<sup>-1</sup> sr<sup>-1</sup>
- Sub-photospheric contribution is extrapolation



Bustamante, Baerwald/Heinze, Murase, Winter, Nature Commun. 6, 6783 (2015) + ApJ 837 (2017) 33



### But: can GRBs power the diffuse neutrino flux?

- Sources invisible in photons?
  Example: Choked jets
  e. g. Senno, Murase, Meszaros, 2016
- > Abundant, low luminosity sources? Example: Low luminosity GRBs e.g. Murase, Ioka, 2013; Tamborra, Ando, 2015
- Other source class with internal shocks? Example: Tidal Disruption Events



From Lunardini, Winter, 2017; see also Wang, Liu, Dai, Cheng, 2011; Wang, Liu, 2016; Dai, Fang, 2017; Senno, Murase, Meszaros, 2017; Batista, Silk, 2017; Zhang, Murase, Oikonomou, Li, 2017

CF

Stall Radius

Extended

Material

Choked Jet

Progenitor

Core



#### Conclusions

- GRB neutrino searches are promising from the neutrino perspective: highest sensitivity among all source classes
- Conventional GRBs cannot power the observed diffuse neutrino flux; may contribute at ~ 1% level
- > GRBs could be, however, sources of the UHECR **nuclei**
- In that case, neutrinos constrain the prompt emission mechanism of GRBs (e.g. the collision radii are expected to be high in the one zone model)
- Caveat: different messengers may originate from different regions of the same object class (multi-collision model)
- Multi-collision prediction, which is hardly sensitive to the geometry estimators, is potentially within reach of IceCube-Gen2

