

Workshop on Innovative Delivery Systems in Particle Therapy Torino, 23-24th February 2017

Advanced Linac Solutions for Hadrontherapy

<u>A. Garonna</u> on behalf of Prof. U. Amaldi V. Bencini, D. Bergesio, D. Carrio Perez, C. Cuccagna, E. Felcini, P. Riboni, M. Varasteh

TERA Foundation

<u>Disclaimer</u>: many thanks to **S. Benedetti (CERN)**, **A. Degiovanni (ADAM)**, M. Vaziri (UC Merced) and F. Wenander (CERN) for their contribution to these slides

<u> TErapia con Radiazioni Adroniche</u>

Foster the applications of physics and computing to medicine and biology

- Proton Ion Medical Machine Study (PIMMS) with CERN
- Italian National Center of Oncological Hadrontherapy (CNAO)
- > 200 professionals trained

TULIP

Linac structures

Detectors

PRT10@CNAO

PRR30 (Proton Range Radiography system for

Hadrontherapy)

The BISE detector installed at the Bern radioisotope

production center

Introduction

TULIP

Linac structures

Timeline of the Cyclinac Concept

Introduction

САВОТО

TULIP

Linac structures

ADAM's Linac for Image Guided Hadron Therapy

Hadrontherapy modern technical challenges

Treatment of **moving organs** requires:

- a) 3D feedbacks
- b) 3D spot scanning

c) multipainting

Linac systems components

Cyclotron or RFQ+DTL

- Compact High transmission
- Power efficient Low emittance

Introduction

Linac structures

Linac beam

70 MeV

Simulation performed with code DESIGN and LINAC

Introduction

TULIP

Linac structures

CABOTO: CArbon BOoster for Therapy in Oncology

 Cyclotron output energy: Choice linked to facility's clinical goals
(70 MeV/u – 230 MeV/u)

Superconducting Cyclotron design in collaboration with INFN-LNS

• External ion sources

2 10¹⁰ H₂⁺ in 1.5 μs pulse (100 Hz)

1 10⁸ C⁶⁺ in **1.5 μs** pulse (**300 Hz**)

TULIP

Linac structures

Superconducting EBIS

Introduction

- Large magnetic fields and intense electron guns allow to produce **fast ionization**
- Pulsed operation at **high repetition rate** is possible
- **Very small emittances** are produced (< 0.1 μm rms normalized)
- Others: Krion-2 from JINR and EBIS-SC from Dreebit Gmbh

Example: CERN's MEDeGUN

- **Dedicated EBIS** source with highcompression Brillouin electron gun
- Low electron beam energy optimized for C⁶⁺
- Short pulse lengths <5 μs pulses

• Assembly of last pieces ongoing and first electron beam test will start soon

* R. Mertzig et al., "A high-compression electron gun for C^{6+} production: concept, simulations and mechanical design", to be published

* A. Shornikov and F. Wenander, "Advanced Electron Beam Ion Sources (EBIS) for 2-nd generation carbon radiotherapy facilities", http://dx.doi.org/10.1088/1748-0221/11/04/T04001

Design Parameter	MEDeGUN	
Test site	TwinEBIS, CERN	
Main magnet	2 T	
Trap length	0.25 m	
Electron current	1 A	
Current density	1.5 kA/cm ² (3.5 kA/cm ² , 5 T)	
Electron energy	7.5-10 keV	
Capacity C ⁶⁺	up to 1.10 ⁹ ions per pulse	
Repetition rate C ⁶⁺	180 Hz (440 Hz, 5 T)	

Introduction

САВОТО

TULIP

Linac structures

CABOTO: all-linac

Introduction

TULIP

Linac structures

The RFQ (Lombardi et al. CERN)

$\varepsilon_x = \varepsilon_y$ [Norm. RMS]	0.025 pi mm mrad
ε _z [Norm. RMS]	0.125 pi deg MeV

- bunching and acceleration of the beam up to 5 MeV/u
- Highest frequency RFQ in the world (750 MHz)
- Proton RFQ built and presently under commissioning
- Based on the same technology, a C^{6+} RFQ is being designed

Introduction

CABOTO

TULIP

Linac structures

The SCDTL (Picardi et al. ENEA)

- Low energy acceleration: C^{6+} up to 70 MeV/u
- 5 Klystrons, 18 m long
- 14 MV/m average active gradient
- 3 GHz design

ENEA Frascati SCDTL unit test

Introduction

CABOTO

TULIP

Linac structures

• The final accelerating section of CABOTO

• Will bring the beam up to 430 MeV/u, and be able to vary this energy in the range 100 MeV/u - 430 MeV/u

- 34 Klystrons, 34 m long
- 28 MV/m average active gradient
- No technical limits in increasing even further the final energy

TULIP

Linac structures

RF power source (Syratchev et al. CERN)

- New Klystron design dramatically increases efficiency wrt current available technology
- Assembly at VDBT (Russia) and tested at CERN
- 77% predicted Klystron efficiency, achieved 60 %
- 6.5 MW peak power, 90 kg, 0.9 m long

6 MW VDBT MBK

7.5 MW VDBT MBK

Collector screen

Introduction

САВОТО

TULIP

Linac structures

• Overall transmission of about 75%

Section	RF Peak Power	RF Avg Power*	Rel. contrib.
RFQ	1 MW	3 kW	0.4 %
SCDTL	40 MW	100 kW	13 %
CCL	260 MW	700 kW	87 %
MAX POWER	300 MW	800 kW	-

*With $Duty Cycle = 1.8 * 10^{-3}$ (Rep. Rate 360 Hz, 5 µs RF pulse length) and RF power sources efficiency of 65% (conservative)

• Conservative estimation of power consumption: 1.2 MW

TULIP

Linac structures

Dedicated Beamlines

<u>Requires dedicated High Energy Beam transfer line optics:</u>

- Small trans. emittance/aperture : $\varepsilon_{norm-rms} \sim 0.3 \ \mu m$
- Large momentum acceptance : Small dispersion and chromaticity

TULIP

Linac structures

- Design based on CNAO layout with three treatment rooms
- Magnets and power supplies designed to follow beam energy variation at 200 Hz: FeCo prototype was built and tested
- Small beam emittance allows for small aperture magnets, thus reducing manufacturing and operational costs

TULIP

CABOTO

CERN FeCo prototype

Introduction

TUrning Linac for Protontherapy

TULIP linac at 3 GHz with RF rotary joints

Introduction

САВОТО

TULIP

Linac structures

Research on high gradients and efficient structures

• Many other types

Introduction

CABOT<u>O</u>

TULIP

Linac structures

Research on CCL high gradients

- Accelerating gradients of ~ 30 MV/m for CCL structures
- High gradient tests with CLIC at S-band and C-band
- S. Verdú-Andrés et al, arXiv:1206.1930v2
- A. Degiovanni et al, NIM A 657

Introduction

CABOTO

TULIP

Linac structures

• Research program carried out in collaboration with CLIC (Syratchev et al.)

- A structure for beta equal to 0.38 has been designed and successfully tuned
- successful candidate for the 30-80 MeV booster.

Conclusion

TULIP

Linac structures

High-gradient Btw structure

• 20 cm long

Max gradient of about 50 MV/m 10 MeV energy gain from this structure

• The high power test of the prototype is ongoing at CERN

Conclusion

TULIP

TULIP with BwTw modules

Advanced linacs for ion beam therapy enable:

1. reduction of the accelerator **footprint** (size and power consumption)

2. fast beam energy variations for **new advanced treatment** modalities

