Grischa Klimpki :: Center for Proton Therapy :: Paul Scherrer Institute

Verification of highly dynamic dose delivery

EuCARD² Workshop on Innovative Delivery Systems in Particle Therapy

Molecular Biotechnology Center, Torino, February 24, 2017
Why do we need a verification system?
What is highly dynamic dose delivery?

Clinical example

- liver tumor (460 ccm)
- single field (0.6 Gy)

discrete scanning
52 sec.

continuous scanning
26 sec.
What is highly dynamic dose delivery?

Fast and flexible form of patient irradiation

FAST
- (quasi) continuous beam of high current (~ 5 nA)
- high duty cycle ($\Delta t_{\text{beam}}/\Delta t_{\text{total}} > 75\%$) due to:
 - (a) minimized energy switching time (~ 100 ms)
 - (b) continuous lateral scanning (speed ~ 2 cm/ms)

FLEXIBLE
- steer beam to any point in the lateral plane
- modulate lateral scan speed at any time
- modulate beam current at any time
What is highly dynamic dose delivery?

- delivery of arbitrary dose distributions
- high dose modulation
- fast, yet accurate irradiation
- regulation in real-time
Which requirements arise?

S A F E T Y

- less beam-off intervals
 - non-destructive verification in real-time
- high modulation in beam current and scan speed
 - independent supervision of both quantities
- redundant checks whenever beam is off

H A R D W A R E

- frequent modulation of beam current
 - fast ionization chambers (ICs) (< 100 µs)
- scanning fast with reduced beam current
 - regions of very low dose
 - weak signal in position-sensitive ICs
present our implementation for a \textit{cyclotron-based} and \textit{time-driven} delivery system
PSI Gantry 2
• Patient treatments since November 2013 using **pencil beam scanning**

• Current mode operation: **discrete scanning**

• Additionally offers **continuous scanning**, designed for fast dose delivery featuring:
 (a) energy switching times ≈ 100 ms
 (b) lateral scan speeds up to 2 cm/ms
 (c) beam current regulation in < 1 ms

• Clinical go-live still requires a dedicated monitoring and validation system
Beam monitors for continuous scanning

degraded

beamline

scanner magnets

90° bending magnet

nozzle

iso-center
 Beam monitors for continuous scanning

- **Energy:** selection & tuning

 (Hall probes, potentiometers)
Beam monitors for continuous scanning

- **Energy:** selection & tuning
 - (Hall probes, potentiometers)
- **Position:** Hall probes
 - (one-axis, SENIS)
Beam monitors for continuous scanning

- **Energy**: selection & tuning
 (Hall probes, potentiometers)
- **Position**: Hall probes
 (one-axis, SENIS)
- **Dose**: parallel-plate ICs
 (90/350 µs charge collection)
Beam monitors for continuous scanning

- **Energy:** selection & tuning
 (Hall probes, potentiometers)
- **Position:** Hall probes
 (one-axis, SENIS)
- **Dose:** parallel-plate ICs
 (90/350 µs charge collection)
Beam monitors for continuous scanning

- **Energy:** selection & tuning
 (Hall probes, potentiometers)
- **Position:** Hall probes
 (one-axis, SENIS)
- **Dose:** parallel-plate ICs
 (90/350 µs charge collection)
- **Shape:** strip monitor
 (88 x 128, 2 mm strip width)

![Diagram of beam monitoring system](image)
• **Level 1:** Real-time verification *during* the application of a line to prevent *radiation incidents*
• **Level 1:** Real-time verification *during* the application of a line to prevent *radiation incidents*
Verification concept

- **Level 1:** Real-time verification *during* the application of a line to prevent *radiation incidents*

- **Level 2:** Online verification *after* the application of a line to assess and validate *delivery accuracy*
Verification concept

- **Level 1**: Real-time verification *during* the application of a line to prevent *radiation incidents*
- **Level 2**: Online verification *after* the application of a line to assess and validate *delivery accuracy*
Definition of delivery error

- Errors occur rarely and randomly.
- Restrict magnitude of delivery errors to
 - hot/cold spots of ± 2% of fraction dose\(^1,2\)

\[\text{dose} \quad \pm 36 \text{ mGy} \]
\[\text{position} \quad \pm 1.5 \text{ mm} \]

- Still no effect on clinical outcome

\(^1\) ICRU. *Journal of the ICRU* 7(2), 29-48 (2007).
\(^2\) IEC. *Medical electrical equipment*. 60601-2-64 (2014).
Tolerance band for beam position

Graph showing the position at iso-center versus delivery time. The graph includes two lines:
- Black: actual position
- Red: high and low interlocks

Yellow box: "T Hall probe (surrogate for position)"
Tolerance band for beam current

dose monitor 1
(instantaneous signal)
Tolerance band for deposited dose

![Graph showing the relationship between delivery time and the number of delivered protons for dose monitor 2. The graph includes lines for actual delivered protons and high and low interlocks.]
Testing interlock functionality

Response of our test system to tolerance violations
What about smaller inaccuracies?

Examples

- rather noisy beam current
- slight offset in beam position
- unexpected instability in regulation

Solution

- assessment of integrated profiles → absolute dose → direct position
- 88 x 128 strip monitor

(DE.TEC.TOR, Torino)

http://www.detector-med.com/wp-content/plugins/detector_config_os/img/BM_STRIP_C3D2.png

remain undetected by safety level 1
Profiles in the nozzle plane

Retracting nozzle and strip monitor

$\Delta s = 27 \text{ cm}$
Profiles in the nozzle plane

Retracting nozzle and strip monitor

$\Delta s = 14 \text{ cm}$

![Graph showing strip signal vs. position](image.png)
Profiles in the nozzle plane

Retracting nozzle and strip monitor

\[\Delta s = 1 \text{ cm} \]

![Graph showing profiles in the nozzle plane with labels for various components such as beam energy, gantry rotation, strip monitor, and nozzle extraction.](image)
The shape of the pencil beam in the nozzle plane depends on (at least) five parameters:

- beam energy E
- nozzle extraction Δs
- gantry angle α
- lateral T position
- lateral U position

The dependencies are *coupled* and, therefore, complicated to model accurately.

Our solution: Acquire a comprehensive beam shape look-up table (LUT) and interpolate it smoothly in all five dimensions.
Comparison for $(\alpha, E, \Delta s, U) = (0^\circ, 150 \text{ MeV}, 27 \text{ cm}, 0 \text{ cm})$
Comparison for \((\alpha, E, \Delta s, U) = (15^\circ, 115 \text{ MeV}, 25 \text{ cm}, 5 \text{ cm})\)
Metrics of comparison

Limits derived from successfully delivery patient plans:

- **Integrated strip signal**
 - maximum deviations: ± 10%

- **Profile center of gravity**
 - maximum differences: ± 1.5 mm

- **Profile symmetry**
 - maximum deviations: ± 10%

- **R² value**
 - minimum score: 0.97

- **Gamma pass rate at 2%, 2mm**
 - minimum score: 0.70
Example of violated comparison

Comparison for \((\alpha, E, \Delta s, U) = (15^\circ, 115 \text{ MeV}, 25 \text{ cm}, 5 \text{ cm})\)

\[R^2 = 0.968 < 0.97 \]
conclusion
Not a recipe for every system, but ...

- Two-level verification ensures safe irradiation on Gantry 2 under highly dynamic dose delivery

 level 1: real-time monitoring of beam current and position

 level 2: comparison of measured and predicted dose profiles

- Identical monitoring devices for discrete and continuous scanning mode

- *Ongoing:* testing of error scenarios and interlock resumption strategies
Thank you for your attention!

We acknowledge the support of our software and electronics engineers.

This work is partly funded by the Giuliana and Giorgio Stefanini Foundation.