

fondazione

www.cnao.it

Guido Baroni, Ph.D.

CartCasLab - Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy

Clinical Bioengineering Unit, CNAO, Pavia, Italy

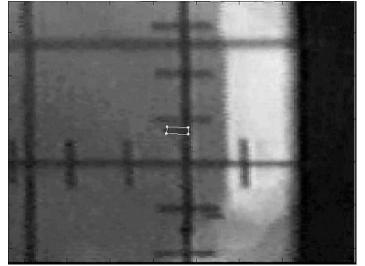
Motion monitoring technology:

✓ Motion monitoring in 4DCT: sufficient as ground-truth ?

OLITECNICO

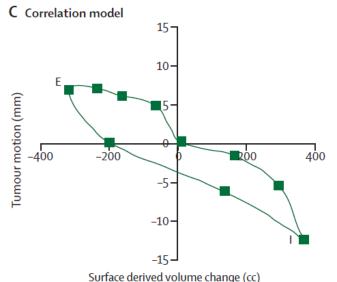
✓ How to improve ?

Clinical experience in respiratory gated treatments at CNAO

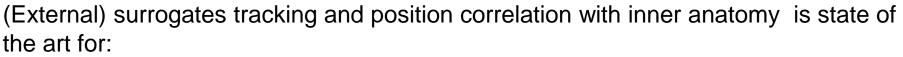

- Efficacy of device for motion suppression
- Redundant verification
- ✓ QA

Motion modeling beyond tumor tracking

- ✓ Local motion models for tumor tracking
- ✓ Global motion models for adaptive strategies

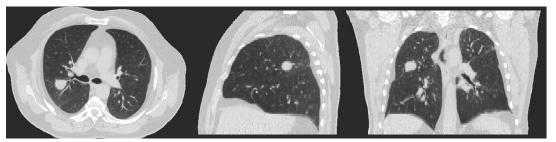


- Direct tumor imaging
 - Marker-based methods
 - ✓ X-ray [Shirato et al. Cancer Sci 2012;103:1–6, Review]
 - ✓ EM (Calypso[™]) [Balter et al. *IJROBP* 2005;61:933–37]
 - ✓ Positron emitters [Chamberland et al., Med Phys, 2011, 38:810–19]
 - Markerless
 - ✓ Ultrasound [Schlosser et al Med Phys 2010;37:6357–67]
 - Real-time X-ray image registration [Gendrin et al Radiother Oncol 2012; 102:274–80]
 - ✓ MRI [Fallone et al *Med Phys 2009;*36:2084–88]
 - ✓ 4D-PET [Parodi et al, *Med Phys 2009;36:4230–43*]
- Indirect tumor localization
 - Correlation with surrogates
 - Spirometric measurements [Hughes et al Radiother Oncol 2009; 91
 336–41]
 - ✓ Surface fiducials [Baroni et al., Radiother Oncol 2000;54:21–27]



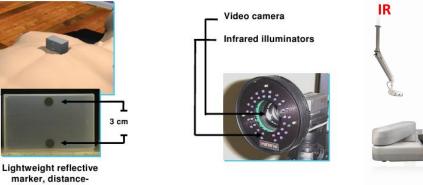
OLITECNICO

DI MILANO



Respiratory correlated / compensated treatment planning and delivery: X-ray radiotherapy

- ✓ time resolved imaging for treatment planning (X-ray and particle)(4D-CT)
- breath-hold irradiation
- respiratory gating
- tumor tracking


calibrated

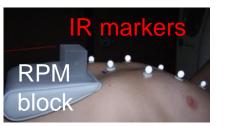
POLITECNICO DI MILANO

"Conventional/commercial" 4DCT:

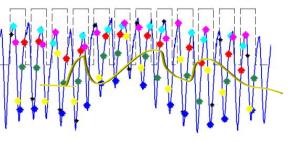
- ✓ relies on a single-dimension breathing signal
- performs a relatively low temporal resolution in clinical use
- ✓ is prone to motion artifacts resulting in deformation of critical structures

Nevertheless:

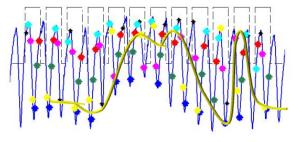
- ✓ feeds time-resolved treatment planning and delivery strategies
- ✓ feeds many motion models based on deformable image registration
- represents the ground truth for motion models assessment

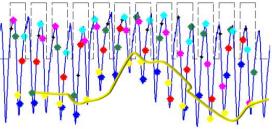

Then ?:

- Increase the complexity of motion monitoring during CT scanning
- Adopt more robust imaging modalities for motion description (4D MRI)

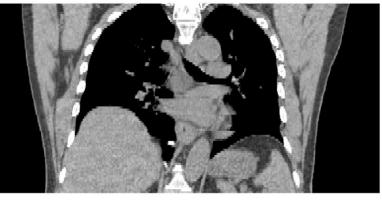


Robust 4DCT resorting – multiple markers

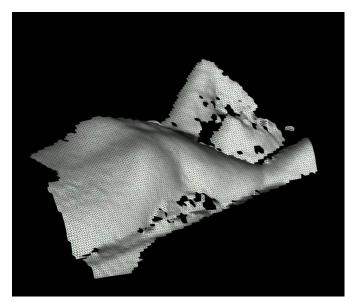


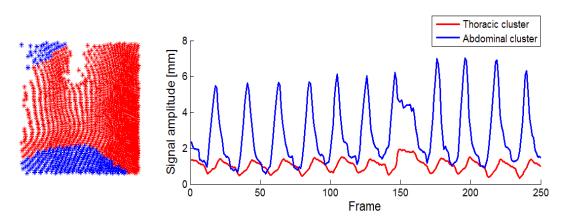

RPM phase

RPM amplitude


Multiple markers

(Gianoli et al, Med Phys 2011)





4D CT based on surface optical tracking

- Extract the 3D trajectory of non-correspondent surface points acquired with optical systems (deformable mesh registration) (Schaerer et al, PMB 2012)
- Synthesis of a multi-regional respiratory motion model applicable for robust image resorting and/or for respiratory correlated delivery

Correlation with diaphragm motion (US) (median ± quartile)(5 subjects)

POLITECNICO

- Principal Component Analysis (PCA)
- K-means clustering
- Self-Organizing Maps (SOM)

	PCA	K-means	SOM
Pearson correlation coefficient*	0.90 ± 0.17	0.93 ± 0.06	0.91 ± 0.38
Root-mean-square error* [mm]	0.15 ± 0.10	0.11 ± 0.06	0.20 ± 0.12

A Politecnico di Milano – CNAO joint project

Concept:

- Video-based marker detection and 3D reconstruction
- Video-based pattern light recognition and 3D meshing
- Single or combined working modality
- To be used for robust 4DCT and motion monitoring during treatment delivery

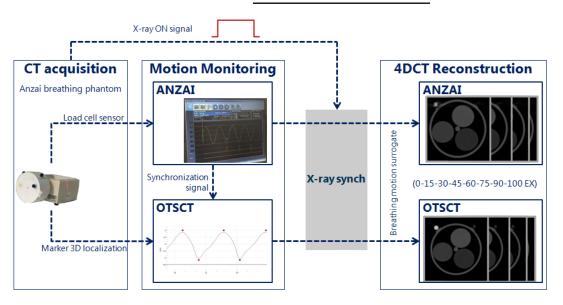
Technical features:

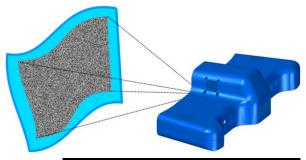
- ✓ 3 CMOS cameras (1280*920 resolution)
- ✓ 1 small-size low-heating speckle projector
- On-board power distribution
- Ethernet + USB connection
- Real-time recognition and 3D reconstruction

System installation and testing:

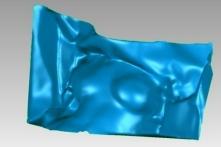
- ✓ Prototype installed in CNAO CT bunker (Siemens SOMATOM Sensation™)
- ✓ Siemens Open Gating Interface[™] installed on CT
- Preliminary testing on system latency, marker 3D reconstruction accuracy and surface detection capabilities
- ✓ Protocol for synchronized use with Anzai[™] system
- Comparison with Anzai-based 4DCT on phantom

Hybrid marker- surface detection @CNAO

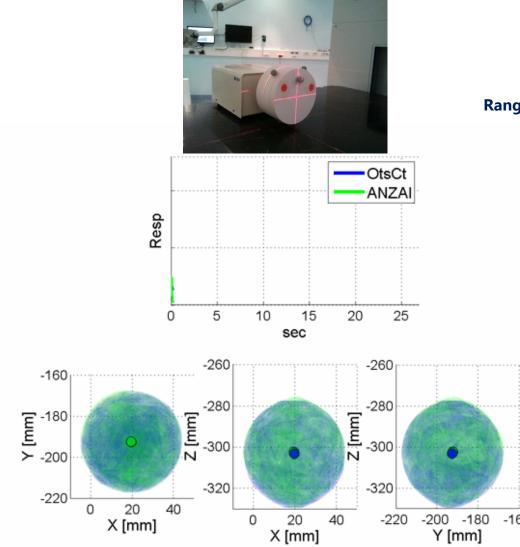

System testing results:


Technical Features – mean(std.dev)

Frame rate (Hz) 30


3D accuracy (mm) 0.41 (0.36)

System latency (ms) 43.7 (2.6)

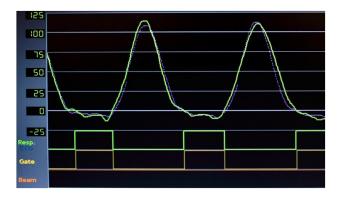


Synchronized Anzai-phantom 4D scanning

	ANZAI	отѕст	Nominal		
	median (IQR)	median (IQR)			
ge of motion (mm)	17.2 (0.18)	18.5(0.14)	20.0		
(Results	of spherical	fitting)			
Radius (mm)	24.6 (1.57)	24.4 (1.47)	25.0		
Residuals (mm)	0.05 (0.61)	0.01 (0.66)			
Results are p	oresented as m	edian (IQR)			
and spl phanton First fer synchro OTS) C referen Readin externa	 Results are presented as median (IQR) Comparable results on motion range and spherical fitting of inner phantom markers First few patient cases acquired with synchronized (Anzai and 1-marker OTS) CT scanning (Anzai-based as reference) Readiness to increase complexity of external surrogates for more robust image rebinning 				

Methods

- ✓ Started in 2014 with commissioning
- Gating associated with abdominal compression

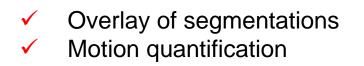

Treatment planning

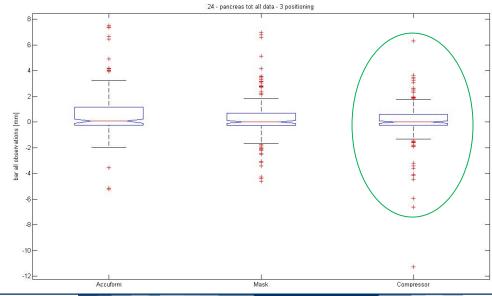
- 4DMRI for patient-specific assessment of of GTV motion (pancreas cases)
- ✓ 4DCT with Anzai belt
- Verification of GTV displacements at contiguous respiratory phases around End-of-Expiration

Treatment delivery

- Active beam rescanning (five layers rescans)
- Anzai system for detecting gating window
- Redundant verification by means of CNAO-OTS in treatment rooms (Ciocca M., Baroni G., *Phys Med*, 2016)

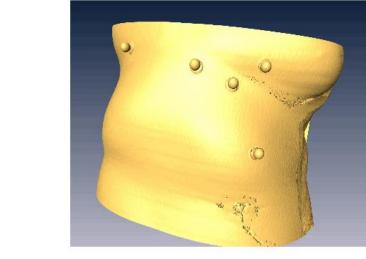
	Sex	Age	Lesion site	Field	Sessions	Dose Tot [Gy]
P1	Male	67	Liver	2	12	55.2
Ρ2	Male	61	Pancreas	2	8	38.49
P3	Female	22	Thorax	2	16	76.8
Ρ4	Male	44	Pancreas	2	13	62.4
Ρ5	Female	75	Pancreas	2	12	55.18
P6	Male	40	Vertebra (spine)	3	16	70.4
Ρ7	Female	47	Liver	2	9	44.68
P8	Female	28	Angiosarcoma	2	16	70.4
P9	Female	74	Pancreas	2	12	57.6
P10	Female	75	Liver	2	12	57.6
P11	Female	76	Liver	2	12	55.2

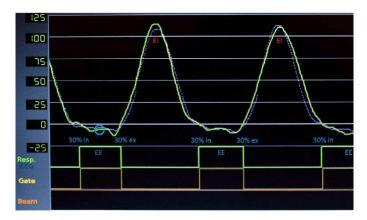




Preliminary 4DMRI motion assessment

- Prone and supine position
- Free-breathing, immobilization mask, abdominal compressor
- MRI sequences: Trufi,T2; Haste,T2
- Image-based 4DMRI reconstruction (Paganelli et al, Med Phys, 2015)
- Manual contouring on End-of-Inspiration, End-of-Expiration, Intermediate phase




4DCT-based GTV motion assessment

- Manual contouring at End-of-expiration phase
- B-spline deformable registration applied for GTV contour propagation on -30% and +30% respiratory phase
- GTV (and relevant OARs when required) motion assessed for respiratory gated treatment verification
- Motion quantified as GTV (and OAR when relevant) centroid displacement

	30insp-0exhale	0exhale-30exp	100insp-0exhale
Median [mm]	0.91	0.80	4.89
IQ [mm]	1.73	1.51	1.76

- Patient specific CTV-GTV margins optimized on patient-specific basis
- Dosimetric verification

Optical tracking verification at delivery

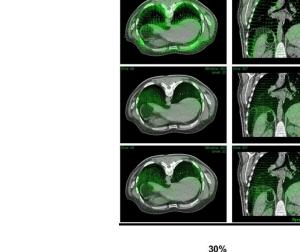
- Surface landmarks position checked at each "beam-on" provided by Anzai system
- Submillimetric deviations observed in average

GTV-CTV

within

Outliers

 \checkmark

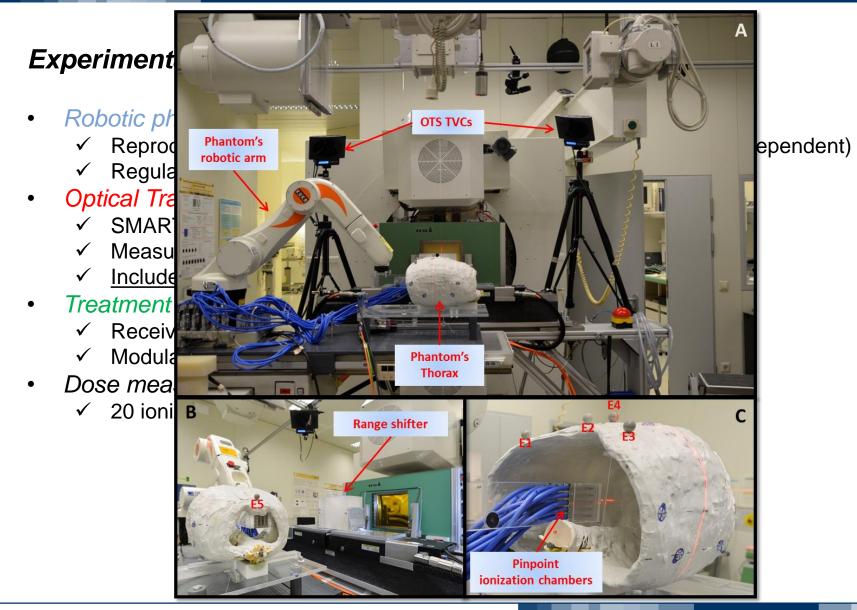

consistently 3D Displacement 2 3D Distribution 3D Distribution Field 1 (n. 644) Field 1 (n. 1471) Field 1 Field 2 (n. 1145) Field 2 (n. 1233) Field 2 1.8 Field 3 1.6 Z [mm] Z [mm] 1.4 -1 -2 -2 1.2 [mm] Y [mm] -2 -2 X [mm] Y [mm] -2 -2 X [mm] 3D Distribution Field 1 (n. 1643) Field 2 (n. 1707) 0.8 0.6 Z [mm] 0.4 -1 0.2 -2 0 **P1** P2 P5 P6 **P8** P10 P11 P3 P4 P7 P9 Y [mm] -2 -2 X [mm]

margins

Model based QA of respiratory gated treatment

(Meschini G.,, Baroni G., Phys Med, 2017)

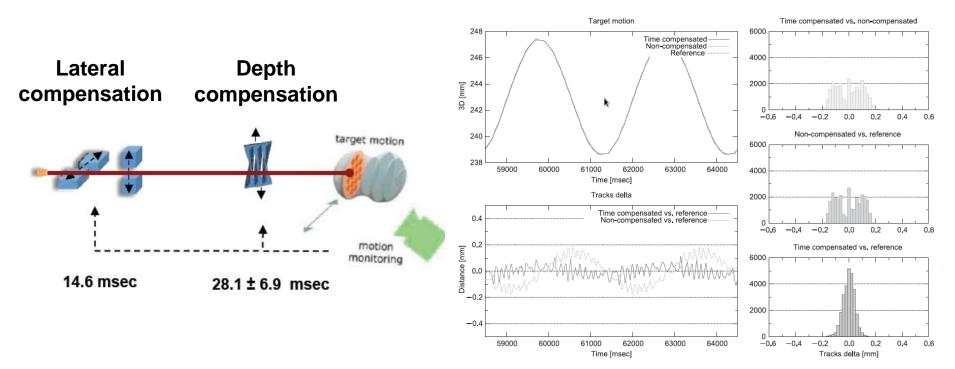
- Extract breathing surrogate signal (phase and amplitude)
- ✓ Feed global/local image-based model
- Estimate/track position of GTV (and other relevant structures) during "beam-on" phase (residual motion assessment)
- Propagate GTV (and other relevant structures) contour to beam-on phases
- Quantify motion and compare with margins
- Dosimetric assessment (work in progress)

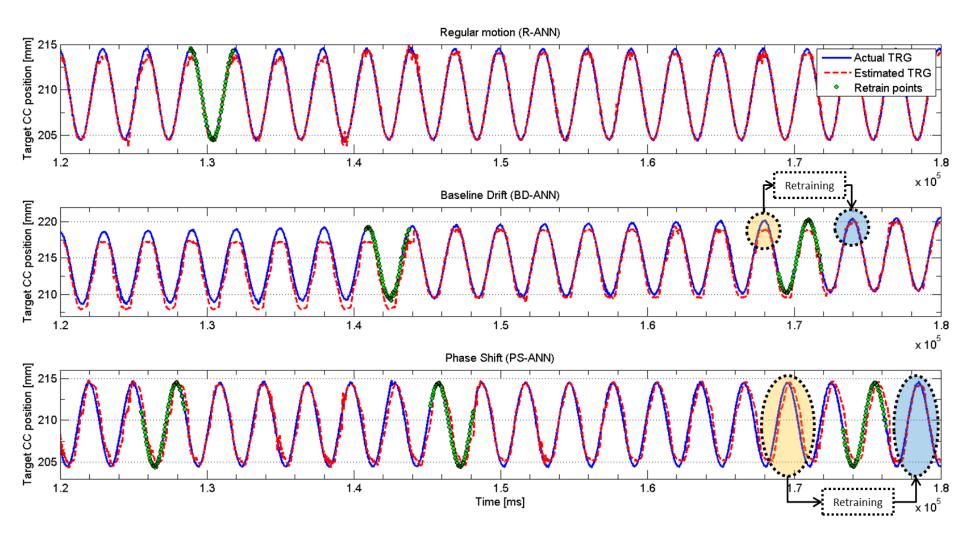


Application of correlation models for **real-time tumor tracking** in particle therapy:

- 1. Experimental validation with scanned beams
 - → local correlation models (target position)
- 2. Global 4D modeling
 - \rightarrow 4D CT prediction for range variation estimation

Tumor tracking in particle therapy – proof of principle @GSI



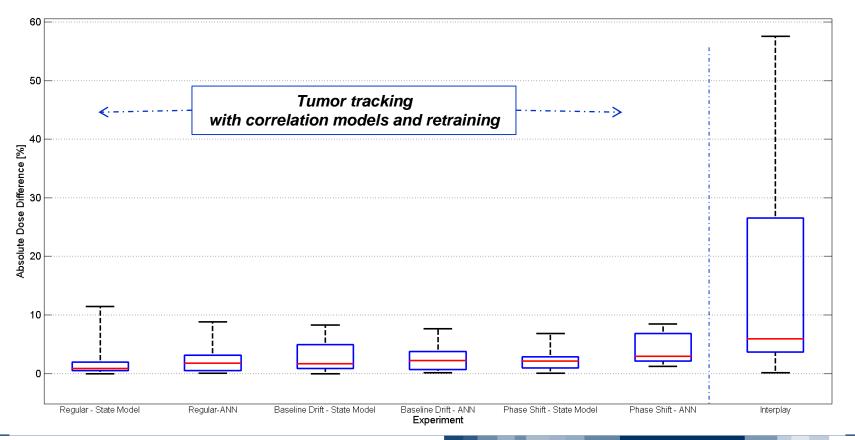

Commissioning of OTS / TCS integration:

- Lateral compensation (magnet steering in BEV)
- Depth compensation (dynamic wedge for beam energy adaptation)

(Fattori et al, Techn Cancer Res Treat, 2013)

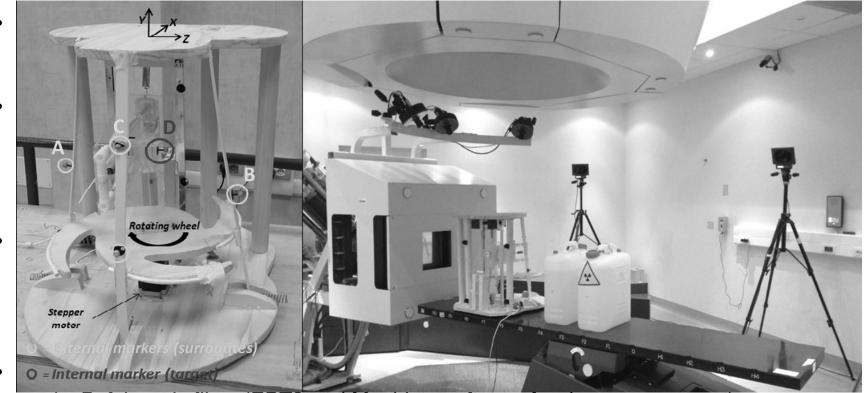
Figure 6: Interpolation and time prediction accuracy. Left panel: reference, time-compensated and non-compensated signals overlay (top), time-compensated and non-compensated delta wrt reference (bottom) for two breathing cycles; Right panel: Error distribution for compensated wrt non-compensated (top), non-compensated (middle) and compensated (bottom) wrt reference.

POLITECNICO DI MILANO



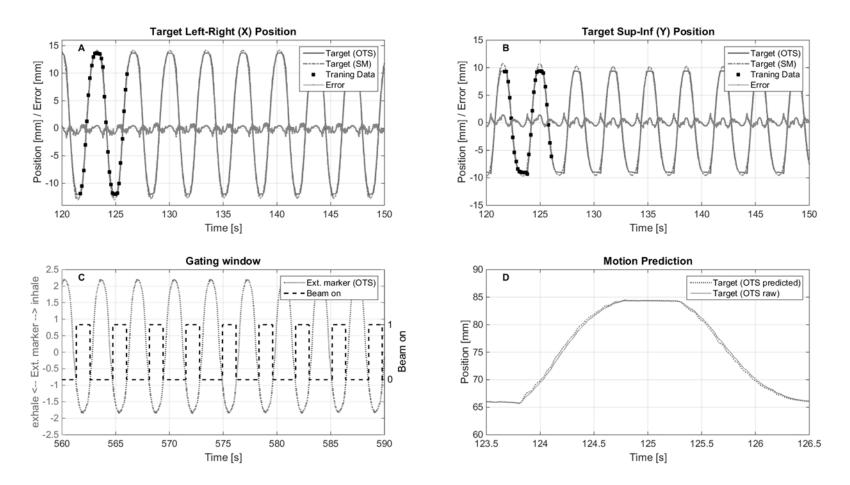
Dose differences w.r.t. static irradiation

- Static irradiation = beam fixed, static target
 - \rightarrow Measurement of nominal delivered dose
- *'Interplay'* = beam fixed, taget moving
 - ightarrow Measurement of «motion blurred» dose


(Seregni et al, PMB, 2013)

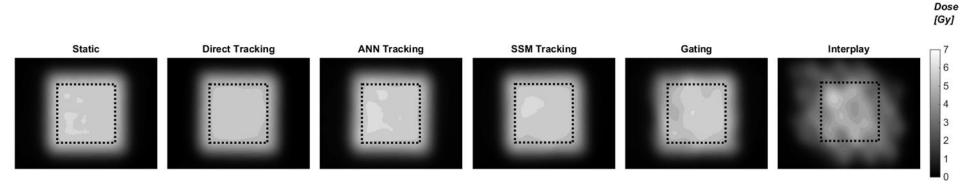
Tumor tracking in particle therapy – proof of principle @GSI

Experimental set-up (CNAO, June 2013)



- Gafchromic films (EBT3 and Mephisto software for dose assessment)
- ✓ Measurement area 60x60 mm²

Performance of correlation models (for tracking and gating)



- Estimated tracking traces (ANN and SSM)
- ✓ 20.6 msec motion prediction for communication delay compensation

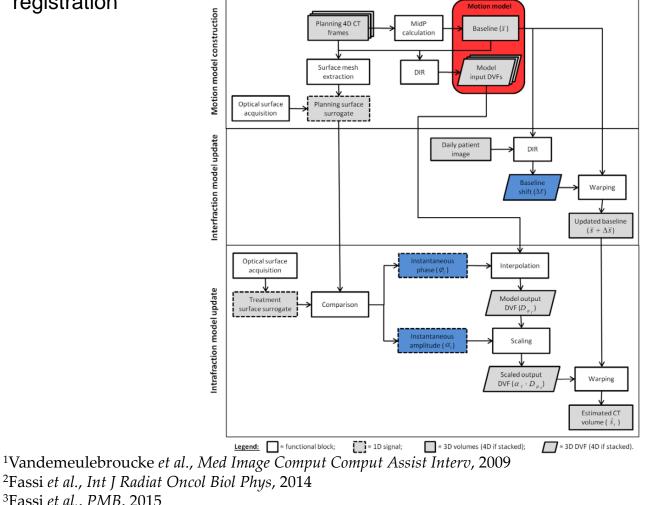
Dose differences w.r.t. static irradiation

	Experiment	Static	Direct Tracking	ANN Tracking	SSM Tracking	Gating	Uncompensated (interplay)
Dose _	Min : Max	4.70 : 5.95	4.68 : 5.48	4.78 : 6.03	4.38 : 5.98	4.15 : 6.08	1.89 : 5.51
(nominal 6 Gy)	Median	5.49	5.48	5.57	5.52	5.62	4.08
Inhomogeneity index	ΔIC		-0.10	0	+0.10	+0.20	+1.65
Conformity index	ΔCI		-0.01	0	0	-0.13	-0.93

(Fattori et al, NIMA-D, 2016)

Motion modeling beyond tumor tracking

✓ Global motion models for adaptive strategies

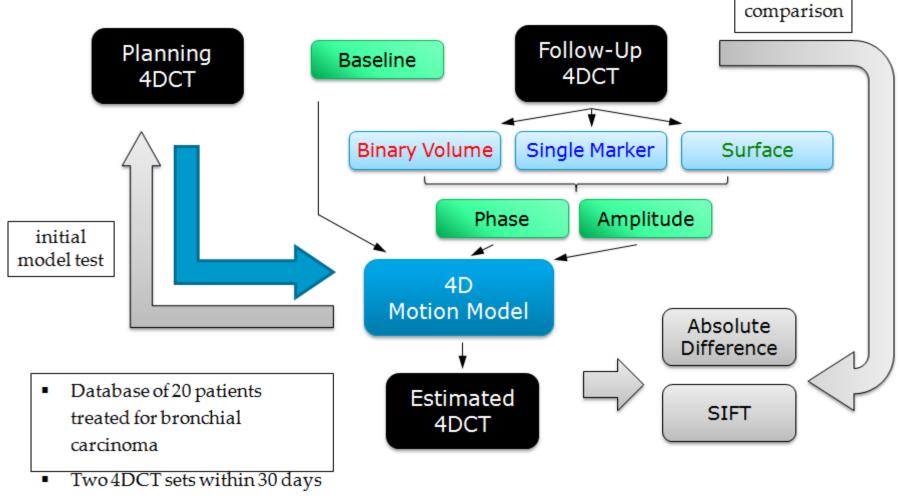

 Estimation of anatomical changes due to breathing irregularities

Global modelling: 4DCT-of-the-"day"

4D Motion Modeling was introduced^{1,2,3} to predict CT volumes corresponding to arbitrary respiratory phases

POLITECNICO **DI MILANO**

Respiratory surrogates are used to estimate CT volumes by means deformable image \checkmark registration



Workshop on Innovative Delivery Systems in Particle Therapy

³Fassi et al., PMB, 2015

POLITECNICO DI MILANO

Workflow and patient data

(Woelfelschneider J., Fassi A., Seregni M., Baroni G., Bert C. Med Phys, in press)

Global modelling: 4DCT-of-the-"day"

オ Volume difference

Geometric errors

WEL variations

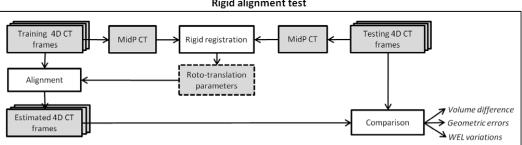
Comparison

Estimated 4D CT

frames

7 patients database with repeated 4D CT (1day-18 days time interval)
 Outcomes: HU differences, COM differences, WEL variations

Training 4D CT

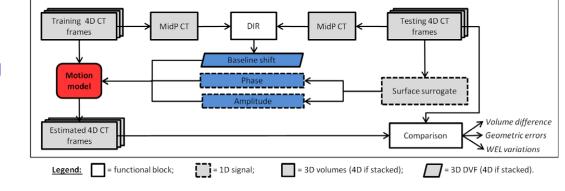

frames

 Baseline shift = 0
 Wotion

 Phase = [0%, 10%,...90%]
 Motion

 Amplitude = [11,...1]
 Rigid alignment test

 Rigid alignment test
 Image: Stration of the strate strat strate strate strate strate strat strate st

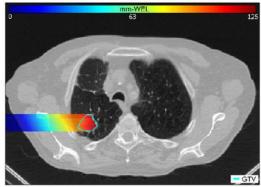


Tracking test

Surrogate driven warping (DIR model)

(Fassi et al., PMB, 2015)

Model testing (reference)



Global modelling: 4DCT-of-the-"day"

WEL variations in GTV voxels and computational cost for ROI

Ipsi-lateral beam WEL (mm-WEL)

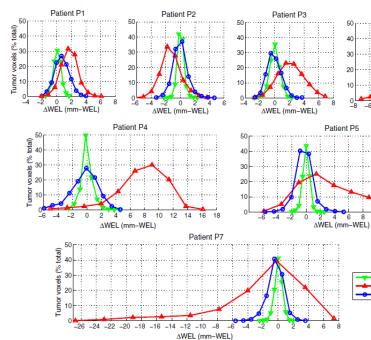
Patient P6

-2 0 2

10 12 14 16

Modeling Rigid alignment

- Tracking


Patient P5

6 8

6

∆WEL (mm-WEL)

according to Jaekel et al., Med Phys, 2001

Fassi et al., PMB, 2015

	Absolute <i>AWEL</i> (mm-WEL)						
	Ipsi-lateral beam			Antero-posterior beam			
Patient	Modeling	Tracking	Rigid	Modeling	Tracking	Rigid	
P1	0.42 ± 0.06	1.00 ± 0.23	1.73 ± 0.15	0.61 ± 0.24	0.95 ± 0.60	1.04 ± 0.25	
P2	0.30 ± 0.05	0.67 ± 0.10	1.67 ± 0.39	0.65 ± 0.22	1.30 ± 0.53	2.71 ± 0.32	
P3	0.49 ± 0.15	0.72 ± 0.22	2.33 ± 0.10	0.72 ± 0.28	1.03 ± 0.60	2.65 ± 0.39	
P4	0.56 ± 0.42	1.36 ± 0.92	7.95 ± 0.56	0.74 ± 0.53	1.40 ± 0.32	4.49 ± 0.43	
P5	0.38 ± 0.10	0.85 ± 0.16	4.31 ± 0.42	0.81 ± 0.39	1.64 ± 1.03	3.90 ± 0.63	
P6	0.70 ± 0.67	1.55 ± 0.72	1.86 ± 0.64	0.80 ± 0.80	1.89 ± 0.83	2.43 ± 0.59	
P7	0.37 ± 0.03	0.79 ± 0.14	3.90 ± 0.11	0.31 ± 0.06	0.48 ± 0.13	9.39 ± 0.42	
Median ± IQR	0.41 ± 0.20	0.90 ± 0.43	2.33 ± 2.21	0.70 ± 0.45	1.33 ± 0.81	3.03 ± 1.94	

	Computational time (s)				
Patient	Ipsi-lateral beam	Antero-posterior beam			
P1	0.46 ± 0.03	0.48 ± 0.03			
P2	0.64 ± 0.05	0.75 ± 0.05			
P3	0.39 ± 0.02	0.60 ± 0.04			
P4	0.38 ± 0.02	0.34 ± 0.02			
P5	0.40 ± 0.04	0.46 ± 0.04			
P6	0.17 ± 0.01	0.15 ± 0.02			
P7	0.56 ± 0.04	0.48 ± 0.02			
Median ± IQR	0.42 ± 0.18	0.48 ± 0.22			

- Tumor tracking is a reality in X-ray radiotherapy and relies on externalinternal correlation based on the integration between intermittent X-ray imaging and optical tracking technologies
- ✓ The feasibility of the same strategy has been demonstrated technically in active scanning particle therapy (of course alternative approaches exist)
- On-line global motion modeling driven by external surrogates may represent a way to enrich tumor position estimation with information on range uncertainties due to variable breathing patterns
- Artifacts-free and reliable 4DCT imaging and deformable image deformation methods are needed
- Particle therapy of mobile targets is a reality on the "safe path" (gating, rescanning)
- Need to assess the clinical advantages vs. technical effort of the "tracking path"

Chiara Paganelli Matteo Seregni Paolo Patete Aurora Fassi Riccardo Via Marco Riboldi Giorgia Meschini

fondazione

Andrea Pella

Giulia Fontana

Barbara Tagaste

CNAO medical physicists

CNAO radio-oncologists

CNAO therapists