COMMISSIONING OF THE DOSE DELIVERY SYSTEM AT MEDAUSTRON

WORKSHOP ON INNOVATIVE DELIVERY SYSTEMS IN PARTICLE THERAPY

Gregor Kowarik, Torino, 24.2.2017
MEDAUSTRON

Located in the city of Wiener Neustadt

About 50km south of Vienna

County of Lower Austria
THE MEDAUSTRON FACILITY

- **Irradiation Rooms**
 - Treatment / Clinical Research:
 1. Proton Centry
 2. Horizontal and vertical fixed beam
 - Non-clinical Research:
 1. Horizontal fixed beam

- **Ion Sources**
- **Linear Accelerator**
- **Synchrotron**
KEY PARAMETERS

- **Accelerator**: Synchrotron; based on PIMMS design and engineering documentation and experience from CNAO

- **Ion species**: protons, carbon ions

- **Energy**
 - Clinical energies: p: 60-250 MeV; C6+: 120-400 MeV/u
 - $3-38 \ (p)/27 \ (C) \ \text{cm penetration depth in water}$
 - IR1 (non-clinical research): clinical energies + up to 800 MeV protons

- **Intensity**
 - Per spill: $>1 \times 10^{10} \ (p) / 4 \times 10^{8} \ (C)$
 - 4 different intensity levels
 - 0.1s (non-clinical) – 10s extraction time

- **Field/beam size**
 - Scanning field: 20x20 cm2 (IR1-3), 12x20 cm2 (IR4)
 - 4 nominal beam sizes: 4, 6, 8, 10 mm FWHM [in vacuum]
 - **Beam delivery total position tolerances**: < 0.5 mm
MEDAUSTRON PARTICLE THERAPY ACCELERATOR ("MAPTA")

- Ion Sources
- Linear Accelerator
- Synchrotron
- Beam Distribution
- Beam Outlet for Nonclinical Research & Engineering Applications
- Accelerator Control System (Main Control Room)
- Power Supplies/Device Control Units (2.OG)
- Dose Delivery System
- Clinical Beamlines IR2: horizontal 1 (A) and vertical (B)
- Clinical Beamline IR3: horizontal 2 (C)
- Clinical Beamline IR4: Gantry Beamline (D)
- MAPTA Treatment Control Panel (Local Control Rooms 1 to 4)

According to the Medical Device Directive (MDD)
MEDAUSTRON PARTICLE THERAPY SYSTEM („MAPTS“)

Patient treatment is controlled and monitored by the Oncology Information System (OIS)

MedAustron Particle Therapy Accelerator

Position Verification System (Ring Imaging System)

Nozzle (incl. ripple filter, range shifter)

Patient Positioning System

Beam Line DDS

MAPTA RIFi, RS
SELECTED PROJECT MILESTONES

Oct 2012: Building finished, moving in
Dec 2012: Sources installed and operational
Dec 2013: Injector Installed and operational
Mar 2014: Synchrotron installed
Apr 2014: First Turn in Synchrotron
Jul 2014: First Acceleration
Oct 2014: First Extraction and beam in irradiation room
Dec 2015: First complete integration - “One Plan Runs Through”
April 2016: First beam in IR1 (non clinical research)
June 2016: “Anlagenbuch” (electrical safety) - OeNorm E8001 (8007, 60601, 62353, etc)
June 2016: MAPTA “System Freeze” – starting system level tests and medical commissioning
Dec 2016: CE label received for horizontal fixed beamlines
 Starting clinical operation in one room - First patient
TIMELINE

<table>
<thead>
<tr>
<th>Year</th>
<th>Modalities</th>
<th>Rooms</th>
<th>Med. Shifts</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>P H</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2017</td>
<td>P H+V</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2018</td>
<td>P H+V</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2019</td>
<td>P H+V+Gantry*</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2020</td>
<td>P H+V+Gantry</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2021</td>
<td>P H+V+Gantry</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

* Gantry cardinal angles in Q3/2019
PATIENT NUMBERS AND UPTIME

- Therapy Accelerator Uptime
 - Continuously >80% (weekly average) since 15 weeks
 - >95% last week
- Currently approx. 3-7 patients per day
- Indications: meningioma, prostate, extremities
- Planned soon: Pediatrics (after stabilisation of uptime)
- Patient in-room time <1h
- QA time:
 - Machine QA <50 minutes
 - Handover at 6am
 - MP QA approx. 3-4h
NON-CLINICAL RESEARCH

- **Areas of research**
 - Applied and translational Radiobiology
 - Radiation physics
 - Medical radiation physics and Oncotechnology

- **Linked to**
 - Vienna University of Technology
 - Medical University Vienna

- **Same configuration as in the treatment rooms but additional features for physics experiments**
REGULATORY FRAMEWORK

MAPTA:
- MDD: Class IIb medical device
- Certification in accordance to Annex II MDD
 - Quality management system according to ISO 13485
 - Product design assessment (Technical documentation)
- Conformity declaration

MAPTS:
- System declaration (MAPTS)

Facility – national regulations:
- Environmental impact assessment procedure
- Electrical safety
- Radiation protection
- Authorisation as a clinic
DOSE DELIVERY SYSTEM

- CE certified medical product manufactured by CNAO
- Same system as in use at CNAO (with minor differences)
- 20x20 cm² field size (12x20 cm² for the Gantry)
- 2 Integral ionisation chambers
- 2 Strip ionisation chambers per axis (MedAustron)
- Operating gas: Nitrogen
- Active position feedback loop
- Interlocks: position, size, intensity
TECHNICAL COMMISSIONING

- Performance tests at the CNAO facility
- Installation & system integration at MedAustron
- Basic performance/integration tests with beam
- Development of calibration tools and procedures
- Development of analysis tools
- Technical characterisation; bugfixing
- Compliance analysis to the IEC60601-2-64 and determination of configuration settings
- Support of treatment record analysis (Medical Physics)
TECHNICAL CHARACTERISATION

- Charge collection efficiency
- Linearity of the monitors (intensity)
- Dynamics of the scanning
- Interlock behaviour
 - Positions
 - Spotsizes
 - Intensities
- Environmental conditions: acoustic noise, EMC, etc.
- Compatibility: X-rays, vibrations, etc.
- Dosimetric analysis: 2D, 3D
INTERLOCKS REVEALING AN ISSUE WITH PCO RIPPLE

Higher frequency of intensity interlocks

Ripple on the power converters of main ring quads was found to be present

Distinct regular pattern \(f = 83 \text{Hz} \)
SPOTSIZE INTERLOCK

Methodology is based on counting number of strips → strong position dependency

The DDS does not provide diagnostic information regarding the measured spotsize → empirical study was performed to benchmark a simulation in order to characterise the behaviour
SPOTSIZE INTERLOCK

Position-dependent FWHM result of the same beam leads to position-dependent interlock trigger

Horizontal strip chamber
Distribution of interlocks (red)

Vertical strip chamber
Distribution of interlocks (red)

FWHM Upper Threshold = 110%
MONITOR LINEARITY (INTENSITY)

62 MeV
5.0 s extraction
\(\mu = 215.0 \)
\(\sigma = 197.3 \)

62 MeV
0.2 s extraction
\(\mu = 5066.9 \)
\(\sigma = 826.2 \)
TREATMENT RECORD ANALYSIS

Deviations of spot positions

- 1M NP/spot still:
 - ~10% spots w/o position
 - ~25% spots out of tolerance
- 4M NP/spot:
 - Nearly all spots with position and within tolerance

Medical Physics is performing studies of the dosimetric impact of the reported deviations

According to DDS 60601-2-64 compliancy analysis: For deg20%: ~2.7E6 NP/spot for spot measurement needed.
MONITORING DRIFT BEHAVIOUR

- Position drift (nozzle movement?)

- Dosimetric drift
COMPATIBILITY ISSUES AND LIMITATIONS / OUTLOOK

- Compliance to IEC 60601-2-64
- Different accelerator as compared to CNAO, but
- Intensity limitations:
 - currently limited to 20% of nominal number of particles per spill
 - Interlock latency and chamber performance at high intensities
 - Position regulation -> position interlock latency
- For Risk Analysis and analysis of compliance to standards, a detailed understanding of the exact behaviour is needed, beyond the level of available documentation
- Organisational inefficiencies
Thank you for your attention!