The muon g-2: status from a theorist's point of view

Massimo Passera INFN Padova

Selected Puzzles in Particle Physics Workshop LNF - 22 December 2016

Outline

Lepton magnetic moments: the basics

• Uhlenbeck and Goudsmit in 1925 proposed:

$$\vec{\mu} = g \frac{e}{2mc} \vec{s}$$
$$g = 2 \pmod{1!}$$

• Dirac 1928:

$$(i\partial_{\mu} - eA_{\mu})\gamma^{\mu}\psi = m\psi$$

• A Pauli term in Dirac's eq would give a deviation...

$$a \frac{e}{2m} \sigma_{\mu\nu} F^{\mu\nu} \psi \quad \to \quad g = 2(1+a)$$

...but there was no need for it! g=2 stood for ~20 yrs.

M. Passera LNF Dec 22 2016

• Kusch and Foley 1948:

$$\mu_e^{\rm exp} = \frac{e\hbar}{2mc} \ (1.00119 \pm 0.00005)$$

• Schwinger 1948 (triumph of QED!):

$$\mu_e^{\rm th} = \frac{e\hbar}{2mc} \left(1 + \frac{\alpha}{2\pi}\right) = \frac{e\hbar}{2mc} \times 1.00116$$

Keep studying the lepton-γ vertex:

$$\bar{u}(p')\Gamma_{\mu}u(p) = \bar{u}(p') \Big[\gamma_{\mu}F_{1}(q^{2}) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2m}F_{2}(q^{2}) + \dots \Big] u(p)$$

$$F_1(0) = 1$$
 $F_2(0) = a_l$

M. Passera LNF Dec 22 2016

A pure "quantum correction" effect!

The muon g-2

The muon g-2: experimental status

• Today: a_{μ}^{EXP} = (116592089 ± 54_{stat} ± 33_{sys})x10⁻¹¹ [0.5ppm].

Future: new muon g-2 experiments at:

- Fermilab E989: aiming at ± 16x10⁻¹¹, ie 0.14ppm. Beam expected next year. First result expected in 2018 with a precision comparable to that of BNL E821.
- J-PARC proposal: aiming at 2019 Phase 1 start with 0.4ppm.

Are theorists ready for this (amazing) precision? Not yet

The muon g-2: the QED contribution

 $a_{\mu}^{QED} = (1/2)(\alpha/\pi)$ Schwinger 1948 + 0.765857426 (16) $(\alpha/\pi)^2$

Sommerfield; Petermann; Suura&Wichmann '57; Elend '66; MP '04

+ 24.05050988 (28) (α/π)³

Remiddi, Laporta, Barbieri ... ; Czarnecki, Skrzypek; MP '04; Friot, Greynat & de Rafael '05, Mohr, Taylor & Newell 2012

+ 130.8773 (61) (α/π)⁴

Kinoshita & Lindquist '81, ..., Kinoshita & Nio '04, '05; Aoyama, Hayakawa,Kinoshita & Nio, 2007, Kinoshita et al. 2012 & 2015; Lee, Marquard, Smirnov², Steinhauser 2013 (electron loops, analytic), Kurz, Liu, Marquard, Steinhauser 2013 (τ loops, analytic); Steinhauser et al. 2015 & 2016 (all electron & τ loops, analytic).

+ 752.85 (93) (α/π)⁵ COMPLETED!

Kinoshita et al. '90, Yelkhovsky, Milstein, Starshenko, Laporta,... Aoyama, Hayakawa, Kinoshita, Nio 2012 & 2015

Adding up, we get:

The muon g-2: the electroweak contribution

One-loop plus higher-order terms:

The muon g-2: the hadronic LO contribution (HLO)

Lots of progress in lattice calculations. T. Blum et al, PRL116 (2016) 232002

See Lusiani's talk

• Alternatively, exchanging the x and s integrations in a_{μ}^{HLO} :

$$a_{\mu}^{\text{HLO}} = \frac{\alpha}{\pi} \int_{0}^{1} dx \left(1 - x\right) \Delta \alpha_{\text{had}}[t(x)] \qquad \qquad t(x) = \frac{x^2 m_{\mu}^2}{x - 1} < 0$$

which involves $\Delta \alpha_{had}(t)$, the hadr. contrib. to the running of α in the space-like region. It can be extracted from Bhabha scattering data!

Carloni Calame, MP, Trentadue, Venanzoni, PLB 2015

- $\Delta \alpha_{had}(t)$ can also be measured via the elastic scattering $\mu e \rightarrow \mu e$.
- We propose to scatter a 150 GeV muon beam, presently available at CERN's North Area, on a fixed electron target:

G. Abbiendi et al, arXiv:1609.08987

With CERN's 150 GeV muon beam, which has an average of ~ 1.3 × 10⁷ μ/s, incident on 20 Be layers, each 3 cm thick, and 2 years of data taking with a running time of 2 × 10⁷ s/yr, one can reach an int. Iuminosity of *L*_{int} ~ 1.5 × 10⁷ nb⁻¹.

G. Abbiendi et al, arXiv:1609.08987

- With L_{int} ~ 1.5 × 10⁷ nb⁻¹ we estimate that we can reach a statistical sensitivity of ~ 0.3% on a_µ^{HLO}, ie 20 × 10⁻¹¹!
- The integrand in the small region $x \in [0.93,1]$ (the peak is at x=0.91), accounting for ~13% of the a_{μ}^{HLO} integral, cannot be reached by our experiment but can be determined using pQCD & time-like data, and/or lattice QCD results.

G. Abbiendi et al, arXiv:1609.08987

HNLO: Vacuum Polarization

 $O(\alpha^3)$ contributions of diagrams containing hadronic vacuum polarization insertions:

Krause '96, Alemany et al. '98, Hagiwara et al. 2011

The muon g-2: the hadronic NLO contributions (HNLO) - LBL

Results based also on Hayakawa, Kinoshita '98 & '02; Bijnens, Pallante, Prades '96 & '02

μ

HNNLO: Vacuum Polarization

 $O(\alpha^4)$ contributions of diagrams containing hadronic vacuum polarization insertions:

$$a_{\mu}^{HNNLO}(vp) = 12.4 (1) \times 10^{-11}$$

Kurz, Liu, Marquard, Steinhauser 2014

• HNNLO: Light-by-light

 $a_{\mu}^{\text{HNNLO}}(\text{IbI}) = 3 (2) \times 10^{-11}$

Colangelo, Hoferichter, Nyffeler, MP, Stoffer 2014

Comparisons of the SM predictions with the measured g-2 value:

a_µ^{EXP} = 116592091 (63) x 10⁻¹¹

E821 – Final Report: PRD73 (2006) 072 with latest value of $\lambda = \mu_{\mu}/\mu_{p}$ from CODATA'10

$a_{\mu}^{\scriptscriptstyle m SM} imes 10^{11}$	$\Delta a_{\mu} = a_{\mu}^{\rm EXP} - a_{\mu}^{\rm SM}$	σ
116591761(57)	$330~(85) \times 10^{-11}$	3.9 [1]
116591818(51)	$273~(81) \times 10^{-11}$	3.4[2]
116591841~(58)	$250~(86) \times 10^{-11}$	2.9[3]

with the recent "conservative" hadronic light-by-light $a_{\mu}^{HNLO}(IbI) = 102 (39) \times 10^{-11}$ of F. Jegerlehner arXiv:1511.04473, and the hadronic leading-order of:

- [1] Jegerlehner, arXiv:1511.04473.
- [2] Davier, arXiv:1612:02743.
- [3] Hagiwara et al, JPG38 (2011) 085003.

- Can Δa_{μ} be due to hypothetical mistakes in the hadronic $\sigma(s)$?
- An upward shift of σ (s) also induces an increase of $\Delta \alpha_{had}^{(5)}(M_Z)$.
- Consider:

$$\begin{aligned} \mathbf{a}_{\mu}^{\text{HLO}} & \to \\ a &= \int_{4m_{\pi}^{2}}^{s_{u}} ds \, f(s) \, \sigma(s), \qquad f(s) = \frac{K(s)}{4\pi^{3}}, \, s_{u} < M_{Z}^{2}, \\ \Delta \alpha_{\text{had}}^{(5)} & \to \\ b &= \int_{4m_{\pi}^{2}}^{s_{u}} ds \, g(s) \, \sigma(s), \qquad g(s) = \frac{M_{Z}^{2}}{(M_{Z}^{2} - s)(4\alpha\pi^{2})}, \end{aligned}$$

and the increase

$$\Delta \sigma(s) = \epsilon \sigma(s)$$

 $(\epsilon > 0)$, in the range:

$$\sqrt{s} \in \left[\sqrt{s_0} - \delta/2, \sqrt{s_0} + \delta/2\right] \quad \Longrightarrow \quad$$

• How much does the M_H upper bound from the EW fit change when we shift $\sigma(s)$ by $\Delta\sigma(s)$ [and thus $\Delta\alpha_{had}^{(5)}(M_Z)$] to accommodate Δa_{μ} ?

W.J. Marciano, A. Sirlin, MP, 2008 & 2010

U

Given the quoted exp. uncertainty of $\sigma(s)$, the possibility to explain the muon g-2 with these very large shifts $\Delta\sigma(s)$ appears to be very unlikely.

- Solution Also, given a 125 GeV SM Higgs, these hypothetical shifts $\Delta\sigma(s)$ could only occur at very low energy (below ~ 1 GeV) where $\sigma(s)$ is precisely measured.
- Vice versa, assuming we now have a SM Higgs with M_H = 125 GeV, if we bridge the M_H discrepancy in the EW fit decreasing the low-energy hadronic cross section, the muon g-2 discrepancy increases.

Solution Light spin 0 scalars & pseudoscalars (axion-like-particles or ALPs), contribute to a_{μ} . We consider ALPs in the mass range ~ [0.1–1] GeV, where experimental constraints are rather loose.

Solution of Δa_{μ} by 1-loop contributions from scalar particles with relatively large Yukawa couplings to muons, of O(10⁻³), was analyzed by Chen, DavoudiasI, Marciano & Zhang, PRD 93, 035006 (2016):

For a pseudoscalar, the 1-loop contribution has the wrong sign (negative) to resolve the discrepancy on its own.

Consider ALP-yy couplings as well as Yukawa couplings:

$$\mathcal{L}_{a} = \frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu} + i y_{a\psi} a \bar{\psi} \gamma_{5} \psi ,$$
$$\mathcal{L}_{s} = \frac{1}{4} g_{s\gamma\gamma} s F_{\mu\nu} F^{\mu\nu} + y_{s\psi} s \bar{\psi} \psi$$

New, potentially important, ALP contributions to a_{μ} :

Marciano, Masiero, Paradisi, MP, arXiv:1607.01022

ALPs contributions to the muon g-2 (3)

For a scalar ALP, change the signs of Y & LbL.

It is the sign of BZ depends on the couplings. We assume it's > 0.

VP is positive both for scalar & pseudoscalar, but negligible.

Marciano, Masiero, Paradisi, MP, arXiv:1607.01022

ALPs contributions to the muon g-2 (4)

- Both pseudoscalar and scalar ALPs can solve Δa_{μ} for masses and couplings allowed by current exp. constraints.
- We see the steed at present low-energy e⁺e⁻ experiments, wind be tested at present low-energy e⁺e⁻ experiments, via dedicated e⁺e⁻ → e⁺e⁻+ALP & e⁺e⁻ → γ+ALP searches.

Marciano, Masiero, Paradisi, MP, arXiv:1607.01022

Testing the SM with the electron g-2

The QED prediction of the electron g-2

e

aeQED	$\rho = + (1/2)(\alpha/\pi) - 0.328 478 444 002 55(33)(\alpha/\pi)^2$
	Schwinger 1948 Sommerfield; Petermann; Suura&Wichmann '57; Elend '66; CODATA Mar '12
	$A_1^{(4)} = -0.328 478 965 579 193 78 \rightarrow O(10^{-18}) \text{ in } a_e$
	$A_2^{(4)} (m_e/m_\mu) = 5.197\ 386\ 68\ (26) \times 10^{-7}$
	$A_2^{(+)}(m_e/m_{\tau}) = 1.837.98(33) \times 10^{-3}$
	+ 1.181 234 016 816((11) $(\alpha/\pi)^3$ O(10 ⁻¹⁹) in a _e
	Kinoshita; Barbieri; Laporta, Remiddi;, Li, Samuel; MP '06; Giudice, Paradisi, MP 2012
	$A_1^{(0)} = 1.181\ 241\ 456\ 587\dots$
	$A_2^{(6)}(m_e/m_{\mu}) = -7.37394102(27) \times 10^{-8}$ $A_2^{(6)}(m_e/m_{\mu}) = -6.5830(11) \times 10^{-8}$
	$A_3^{(6)}(m_e/m_{_{\rm H}}, m_e/m_{_{\rm T}}) = 1.909\ 82\ (34)\ x\ 10^{-13}$
	$-1.91206(84)(\alpha/\pi)^4$ $0.2.10^{-13}$ in a _e
	Kinoshita & Lindquist '81,, Kinoshita & Nio '05; Aoyama, Hayakawa, Kinoshita & Nio 2012 & 2015;
	Kurz, Liu, Marquard & Steinnauser 2014: analytic neavy virtual lepton part.
	+ (.(9(34)(α/π) ³ Complete Result! (12672 mass indep. diagrams!) Aoyama Hayakawa Kinoshita Nio PBL 109 (2012) 111807: PBD 91 (2015) 3, 033006
M. Passera	$0.2 \ 10^{-13} \text{ in } a_e \qquad \text{NB: } (\alpha/\pi)^6 \sim O(10^{-16})$ $\text{No additional contribution of QED bound states beyond PT}^{27}$

The SM prediction of the electron g-2

Compare it with other determinations (independent of a_e):

 $\label{eq:alpha} \begin{array}{ll} \alpha^{-1} = 137.036\ 000\ 0\ (11) & \end{tabular} & \end$

Excellent agreement → beautiful test of QED at 4-loop level!

Old and recent determinations of alpha

Gabrielse, Hanneke, Kinoshita, Nio & Odom, PRL99 (2007) 039902 Hanneke, Fogwell & Gabrielse, PRL100 (2008) 120801 Bouchendira et al, PRL106 (2011) 080801 Using α = 1/137.035 999 049 (90) [⁸⁷Rb, 2011], the SM prediction for the electron g-2 is

• The EXP-SM difference is (note the negative sign):

$$\Delta a_e = a_e^{EXP} - a_e^{SM} = -9.2 (8.1) \times 10^{-13}$$

The SM is in very good agreement with experiment (1 σ). NB: The 4-loop contrib. to a_e^{QED} is -556 x 10⁻¹³ ~ 70 $\delta \Delta a_e$! (the 5-loop one is 6.2 x 10⁻¹³)

- The present sensitivity is $\delta \Delta a_e = 8.1 \times 10^{-13}$, je (10⁻¹³ units): $(0.2)_{\text{QED4}}, (0.2)_{\text{QED5}}, (0.2)_{\text{HAD}}, (7.6)_{\delta\alpha}, (2.8)_{\delta a_e^{\text{EXP}}}$ $(0.4)_{TH}$ ← may drop to 0.2
- The (g-2)_e exp. error may soon drop below 10⁻¹³ and work is in progress for a significant reduction of that induced by $\delta \alpha$.

 \rightarrow sensitivity of 10⁻¹³ may be reached with ongoing exp. work

In a broad class of BSM theories, contributions to a_l scale as

 $\frac{\Delta a_{\ell_i}}{\Delta a_{\ell_i}} = \left(\frac{m_{\ell_i}}{m_{\ell_i}}\right)^2$ This Naive Scaling leads to:

$$\Delta a_e = \left(\frac{\Delta a_\mu}{3 \times 10^{-9}}\right) \ 0.7 \times 10^{-13}; \qquad \Delta a_\tau = \left(\frac{\Delta a_\mu}{3 \times 10^{-9}}\right) \ 0.8 \times 10^{-6}$$

Summary of the exp. contributions to the relative uncertainty of $\delta \alpha$ and δa_e (in ppb). F. Terranova & G.M. Tino, PRA89 (2014) 052118

- The experimental sensitivity in ∆a_e is not very far from what is needed to test if the discrepancy in (g-2)_µ also manifests itself in (g-2)_e under the naive scaling hypothesis.
- NP scenarios exist which violate Naive Scaling. They can lead to larger effects in ∆a_e and contributions to EDMs, LFV or lepton universality breaking observables.
- Example: In the MSSM with non-degenerate but aligned sleptons (vanishing flavor mixing angles), ∆a_e can reach 10⁻¹² (at the limit of the present exp sensitivity). For these values one typically has breaking effects of lepton universality at the few per mil level (within future exp reach).

Giudice, Paradisi & MP, arXiv:1208.6583

The tau g-2: opportunities or fantasies?

Τ

The SM prediction of the tau g-2

- The very short lifetime of the tau makes it very difficult to determine a_T measuring its spin precession in a magnetic field.
- DELPHI's result, from e⁺e⁻ → e⁺e⁻T⁺T⁻ total cross-section measurements at LEP 2 (the PDG value):

 $a_{\tau} = -0.018 (17)$ PDG 2014

 With an effective Lagrangian approach, using data on tau lepton production at LEP1, SLC, and LEP2:

 $-0.007 < a_{\perp}^{NP} < 0.005$ (95% CL)

Gonzáles-Sprinberg et al 2000

• Bernabéu et al, proposed the measurement of $F_2(q^2=M_Y^2)$ from $e^+e^- \rightarrow \tau^+\tau^-$ production at B factories. NPB 790 (2008) 160 • a_{τ} via the radiative leptonic decays $\tau \rightarrow e \bar{\nu} \nu \gamma, \ \tau \rightarrow \mu \bar{\nu} \nu \gamma$ comparing the theoretical prediction for the differential decay rates with precise data from high-luminosity B factories:

$$d\Gamma = d\Gamma_{ ext{o}} + \left(rac{m_{ au}}{M_W}
ight)^2 d\Gamma_W + rac{lpha}{\pi} d\Gamma_{ ext{NLO}} + ilde{a}_ au \, d\Gamma_{ ext{a}} + ilde{d}_ au \, d\Gamma_{ ext{d}}$$

 Detailed feasibility study performed in Belle-II conditions: we expect a (modest) improvement of the present PDG bound.

Eidelman, Epifanov, Fael, Mercolli, MP, arXiv:1601.07987 (JHEP 2016)

Radiative leptonic tau decays: branching ratios

B.R. of radiative $ au$ leptonic decays ($\omega_0=10{ m MeV})$			
	$ au o e ar u u \gamma$	$ au o \mu ar u u \gamma$	
$\mathcal{B}_{\scriptscriptstyle ext{LO}}$	1.834×10^{-2}	3.663×10^{-3}	
$\mathcal{B}_{_{ m NLO}}^{ m Inc}$	$-1.06(1)_n(10)_N imes 10^{-3}$	$-5.8(1)_n(2)_N imes 10^{-5}$	
$\mathcal{B}_{\scriptscriptstyle{ ext{NLO}}}^{\operatorname{Exc}}$	$-1.89(1)_n(19)_N imes 10^{-3}$	$-9.1(1)_n(3)_N imes 10^{-5}$	
$\mathcal{B}^{ ext{Inc}}$	$1.728(10)_{ m th}(3)_{ au} imes 10^{-2}$	$3.605(2)_{ m th}(6)_{ au} imes 10^{-3}$	
$\mathcal{B}^{ ext{Exc}}$	$1.645(19)_{ m th}(3)_{ au} imes 10^{-2}$	$3.572(3)_{ m th}(6)_{ au} imes 10^{-3}$	
$\mathcal{B}^{\dagger}_{\scriptscriptstyle\mathrm{EXP}}$	$1.847(15)_{\rm st}(52)_{\rm sy} imes 10^{-2}$	$3.69(3)_{ m st}(10)_{ m sy} imes 10^{-3}$	

(n): numerical errors (N): uncomputed NNLO corr. $\sim (\alpha/\pi) \ln r \ln(\omega_0/M) imes \mathcal{B}_{\mathrm{NLO}}^{\mathrm{Exc/Inc}}$ [†]BABAR - PRD 91 (2015) 051103 (th): combined $(n) \oplus (N)$ (τ) : experimental error of τ lifetime: $\tau_{\tau} = 2.903(5) \times 10^{-13}$ s

$$\begin{aligned} \tau \to e\bar{\nu}\nu\gamma & \tau \to \mu\bar{\nu}\nu\gamma \\ \Delta^{\mathrm{Exc}} & 2.02\,(57)\times10^{-3} \to 3.5\sigma & 1.2\,(1.0)\times10^{-4} \to 1.1\sigma \end{aligned}$$

 Agreement with MEG's recent μ→evvγ measurement [EPJ C76 (2016) 3, 108] Fael, Mercolli and MP, 1506.03416 (JHEP 2015) Fael and MP, 1602.00457

Radiative leptonic tau decays: branching ratios (2)

Alberto Lusiani – Pisa

Tau Decay Measurements

Tau radiative leptonic decays ($E_{\gamma} > 10$ MeV)

- (see also M.Passera presentation in this workshop)
- CLEO 2000: T. Bergfeld et al., PRL 84 (2000) 830
- BABAR 2015: PRD 91, 051103 (2015)
- Fael & Passera 2015: NLO calculation, JHEP 07 (2015) 153, arXiv:1602.00457 [hep-ph]
- 3.5 σ discrepancy between BABAR 2015 and NLO calculation, to be investigated

18/40

Conclusions

Muon g-2: $\Delta a_{\mu} \sim 3.5 \sigma$. New upcoming experiment: QED & EW ready. Lots of progress in the hadronic sector, but not yet ready!

New proposal to measure the leading hadronic contribution to the muon g-2 via μ -e elastic scattering at CERN.

 Δa_{μ} due to mistakes in the hadronic $\sigma(s)$? Very unlikely!

Light spin 0 scalars & pseudoscalars can solve Δa_{μ} for masses and couplings allowed by current experimental bounds. Dedicated searches can test them at present low-energy e⁺e⁻ colliders.

Electron g-2: Does the discrepancy in (g-2)_μ also manifests in (g-2)_e? NP sensitivity limited by exp. uncertainties, but a strong exp. program is under way to improve both α & a_e.

Tau g-2: unknown. New proposal to measure it via radiative leptonic tau decays. Modest improvement expected. BaBar's precise measurement of $\mathcal{B}(\tau \to e \bar{\nu} \nu \gamma)$ differs from SM by 3.5 σ !

The End