
Who ordered that?

Investigations of the top-Higgs connection

Andrea Giammanco (CP3, UCLouvain)

1

Selected puzzles in particle physics, Dec.20, 2016

Introduction

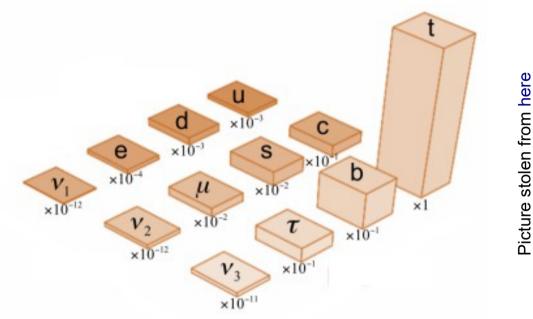
"Who ordered that?", I.Rabi

- 1936: discovery of the muon
- 1947: discovery of the pion, hence discovery that the muon has nothing to do with the Yukawa theory of the strong nuclear force
 - No physicist had any use for a *heavy replica of the electron*; it was considered a mystery, as expressed in Rabi's famous quip
- Pondering on this mystery led to the question whether there is only one neutrino type, or two
 - 1962: discovery that $v_m \neq v_e$
 - Birth of the concept of "generations"

Who ordered those?

	FERMIONS matter constituents spin = 1/2, 3/2, 5/2,									
	Leptons spin =1/2			Quarks spin =1/2						
	Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge				
	\mathcal{V}_{L} lightest neutrino*	(0-2)×10 ⁻⁹	0	u _{up}	0.002	2/3				
	e electron	0.000511	-1	d down	0.005	-1/3				
?	$\mathcal{V}_{\mathbf{M}}$ middle neutrino*	(0.009-2)×10 ⁻⁹	0	C charm	1.3	2/3				
2	μ muon	0.106	-1	S strange	0.1	-1/3				
?	\mathcal{V}_{H} heaviest neutrino*	(0.05-2)×10 ⁻⁹	0	t top	173	2/3				
τ	au _{tau}	1.777	-1	b bottom	4.2	-1/3				

Nicely arranged in three generations. Who ordered the second and the third? Image source: CPEP


A personal note

FERMIONS matter constituents spin = 1/2, 3/2, 5/2,											
Lep	otons spin =1/2	Quarks spin =1/2									
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge						
\mathcal{V}_{L} lightest neutrino*	(0-2)×10 ⁻⁹	0	U up	0.002	2/3						
e electron	0.000511	-1	d down	0.005	-1/3						
$\mathcal{V}_{\mathbf{M}}$ middle neutrino*	(0.009-2)×10 ⁻⁹	0	C charm	1.3	2/3						
μ muon	0.106	-1	S strange	0.1	-1/3						
$\mathcal{V}_{\mathbf{H}}$ heaviest neutrino*	(0.05-2)×10 ⁻⁹	0	t top	173	2/3						
au tau	1.777	-1	b bottom	4.2	-1/3						

a. As a teenager, I loved *complete the sequence* riddles. b. 1995, top quark discovery, this table was everywhere. $_5$ a. & b. \Rightarrow I was driven mad!

The Flavor Puzzle,

i.e., can we make sense of the fermion masses?

Some authors tried *numerology* as a first step towards a model; the most (in)famous example is probably **Koide's formula** (*):

$$m_e + m_\mu + m_\tau = \frac{2}{3}(\sqrt{m_e} + \sqrt{m_\mu} + \sqrt{m_\tau})^2$$

Shockingly accurate (~10⁻⁵ level) for charged leptons; a bit off for down-type quarks; and completely off for up-type quarks

(*) Y.Koide, Lett.Nuovo Cim. 34 (1982) 201; Y.Koide, Mod.Phys.Lett. A5 (1990) 2319-2324

Where is the mass coming from?

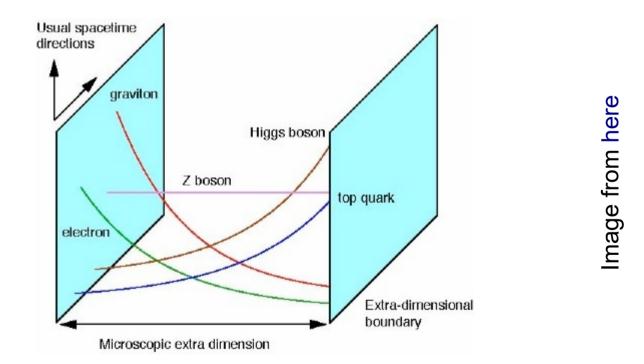
- Back to the basics: the equation of motion for a massive fermion (aka Dirac's Equation) contains a term mψ
- The corresponding term in the Lagrangian density is myy
- Any \u03c8\u03c8\u03c8\u03c8 term breaks chiral symmetry and this makes the theory non-renormalizable
- It takes Spontaneous Symmetry Breaking to work around this: in the SM the mass term is not explicit in the true Lagrangian but emerges spontaneously below the breaking scale

Where is the mass coming from? Z= - 4 Fre FMV + i # # 4 + h.c. + (Y; Y; Y; Ø+ h.c. + $D_{\mu}\phi l^2 - V(\phi)$

8

Where is the mass coming from? $\phi = v + h \qquad L \supset \frac{y_t}{\sqrt{2}} \left(v \bar{\psi}_t \psi_t + \bar{\psi}_t \psi_t h \right)$

In the SM, all fermion mass terms (here top as illustration) come from the Electro-Weak Symmetry Breaking.


The Vacuum Expectation Value, v, is a function of the fundamental parameters of the SM.

We have made some progress: we now know that the fermion mass hierarchy is a mere reflection of the hierarchy in Yukawa coupling strengths.

But who ordered that pattern of Yukawa couplings?

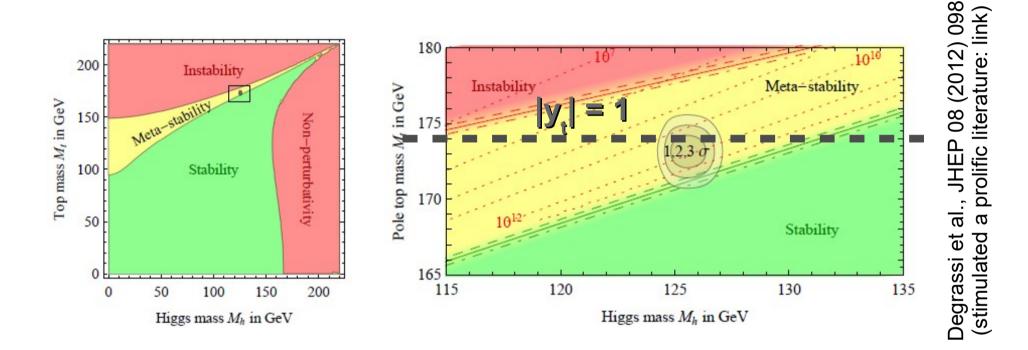
An example of a deeper explanation

• Randall-Sundrum mechanism (string-inspired):

Coupling strengths come from the wavefunction shapes and their overlaps in the warped dimension. Ok but who ordered ... (multi-verse?)

The strange case of the fermion with a natural coupling to the Higgs

(Martinelli dixit: "In Physics there are only 0 and 1")


$$L \supset \frac{y_t v}{\sqrt{2}} \overline{\psi}_t \psi_t \equiv M_t \overline{\psi}_t \psi_t$$

• Fill actual numbers in:

•
$$v = (\sqrt{2}G_F)^{-1/2} = 246.2196(1) \text{ GeV} (G_F = 1.166 378 7(6)x10^{-5} \text{ GeV}^{-2})$$

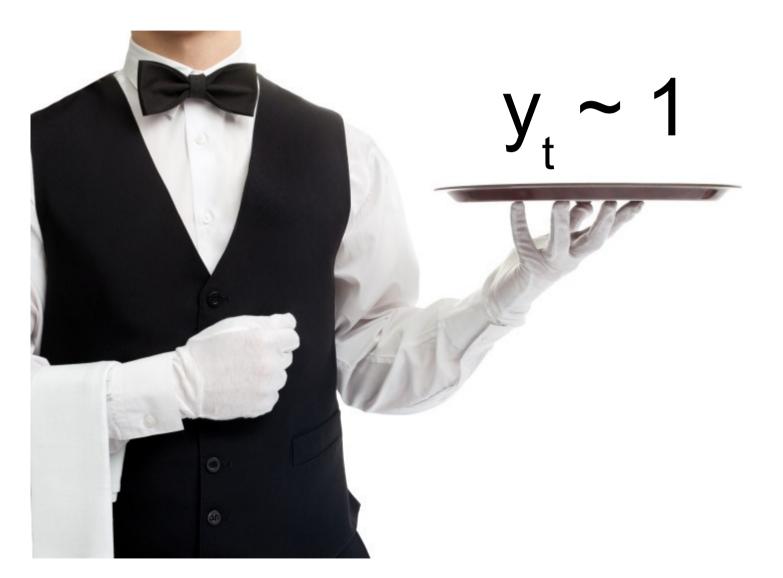
- $M_t^{CMS} = 172.44 \pm 0.49 \text{ GeV}$ (CMS coll., Phys. Rev. D 93 (2016) 072004)
- $M_t^{\text{Tevatron}} = 174.30 \pm 0.65 \text{ GeV}$ (CDF&D0 coll., FERMILAB-CONF-16-298-E)
- We get $y_t^{CMS} = 0.990 \pm 0.003$, $y_t^{Tev} = 1.001 \pm 0.004$
 - (I will comment on the CMS/Tevatron tension later)
 - 1 is an interesting value, for an adimensional parameter
 - Pure chance (numerology), or does it reflect something deep?
 - The SM offers no explanation (apart from pure chance)

How y_{t} once saved the Universe

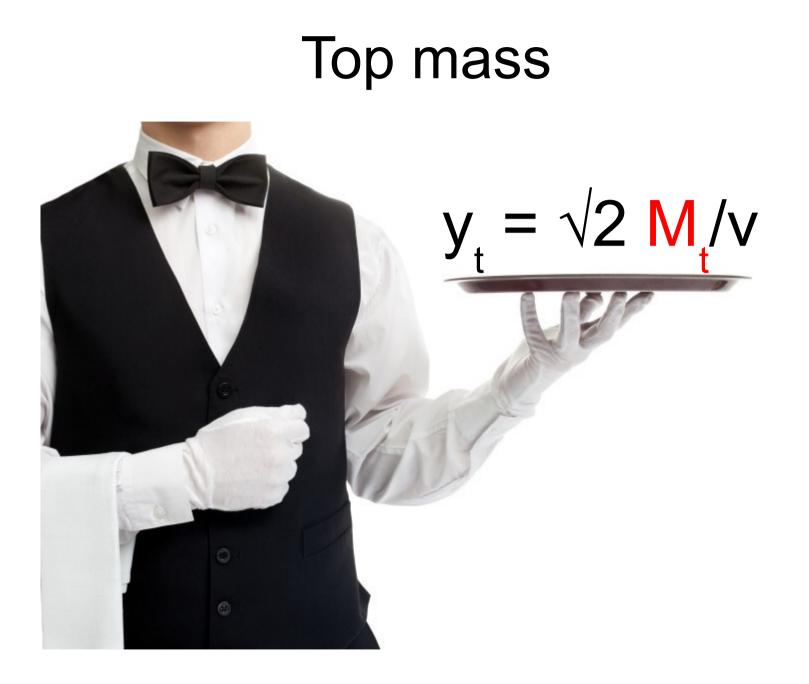
- This study assumes SM validity up to the Planck scale; and, in the SM, $m_{_{\rm H}}$ and $m_{_{\rm H}}$ are free parameters
- Under these assumptions, conspiracy of top and Higgs makes our Universe sit on the thin line between stability and instability
- Any deep reason for that? (Anthropic Principle at play?)

A well-defined experimental question

- I am an experimentalist; my job is not to develop possible explanations, but to answer questions by testing hypotheses
- So I need a question that is well defined
- For example: is y, = 1?

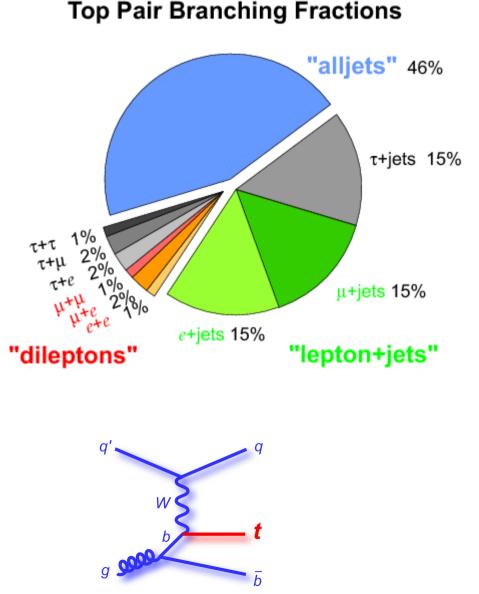

Is
$$y_t = 1?$$

- It sounds short. But in practice it is composed of a few blocks, each of them amounting to a major research program of its own:
 - Measure the mass of the top quark precisely
 - And also care about the exact relationship between what you are measuring in practice and the mass that enters the y_t/m_t relationship
 - Measure the Yukawa coupling through observables independent from the top mass
 - The most direct is the $t\bar{t}H$ cross section
 - Note: ttH has not even been observed (*) yet

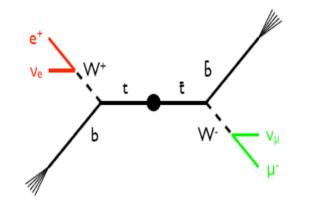

Is $y_{t} = |y_{t}|?$

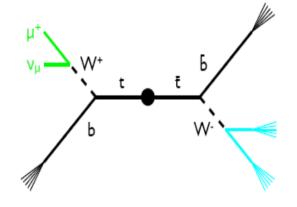
- The cross section of $t\bar{t}H$ is only sensitive to $|y_1|$
- If the phase of y_t in the complex plane is the same as that of the Higgs coupling to gauge bosons (g_{w,z}), it has no effect on any observable
- In the SM, these phases are aligned and so we don't care; we write y₁ as short-hand for |y₁|
- But here the entire premise is that we need to test the validity of the SM; in this mindset, we strive to avoid as many SM assumptions as possible
- In this talk I will also say how to measure the sign (if real; or the complex phase) of y_t relative to g_{W,Z}

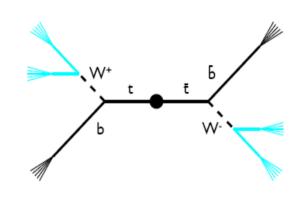
End of introduction


Rest of the talk: experimental work related to this question, involving scores of physicists in the ATLAS and CMS collaborations

Top-pair production and decays

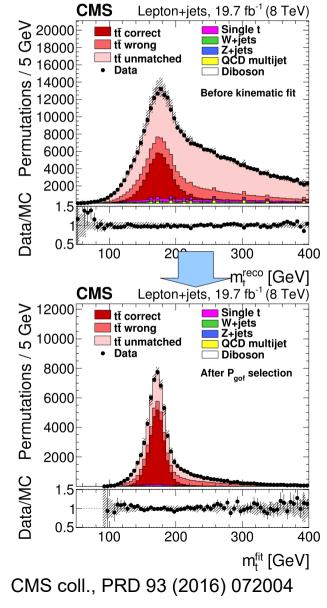

 $\frac{q}{\overline{q}} \xrightarrow{00000} t$ $\frac{t}{\overline{t}} \xrightarrow{g} \xrightarrow{00000} t$


- The dominant production mechanism at LHC is gg→tt̄ (~85-90% of tt̄ at 7-13 TeV)
- Another production mechanism is single top (mediated by the weak force), ~30% w.r.t. tt



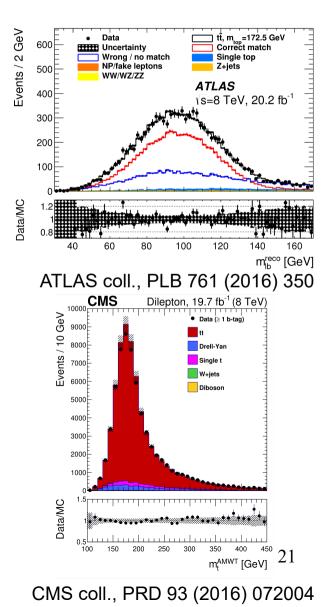
Measuring the mass: top quark selections

 Typical final states exploited in tt production, with complementary pro's and con's:

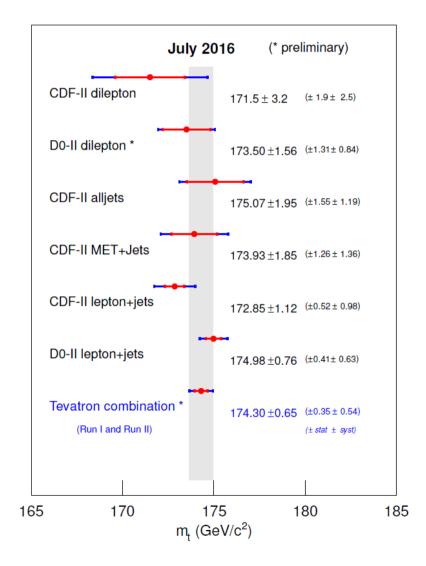

Dileptonic (ee, \mu\mu, e\mu) Very high purity; Rate limited by B(W \rightarrow Iv)²; Reconstructing the top and the antitop is non-trivial because of two neutrinos. Lepton (e, μ) + jets Convenient trade-off btw purity and rate; W \rightarrow jj gives M_w as standard candle \Rightarrow self-calibration of jet energy scale. All-hadronic Low purity; $W \rightarrow jj$ gives M_w as standard candle; Large combinatorics.

Measuring the mass: sensitive observables

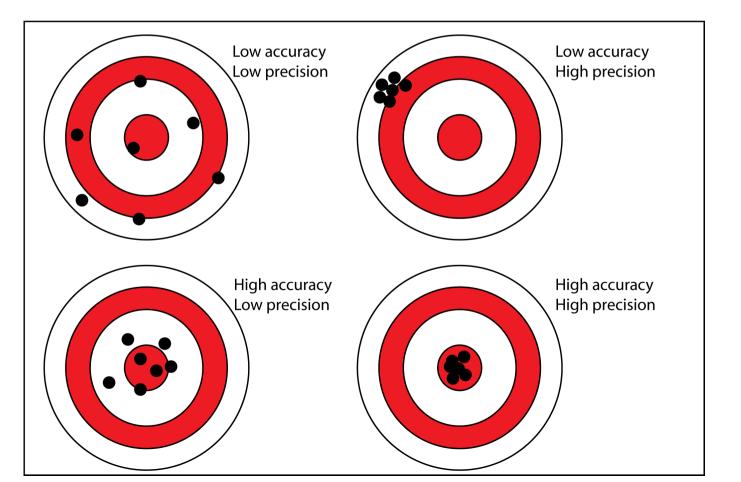
- In I+jets and all-hadronic, the most obvious proxy of the top mass is M(bjj)
- The name of the game is the choice of light jets to form W's, and of b jets to associate to those W's to form top quark candidates
 - Combinatorics is a major problem in all-hadronic
- The leptonic side of I+jets also brings information, but weighs less because missing energy is all that we can use to infer the neutrino momentum
 - Intrinsic quadratic ambiguity:


 $M_W^2 = (E_I + E_v)^2 - (P_I + P_v)^2$ has 2 solutions

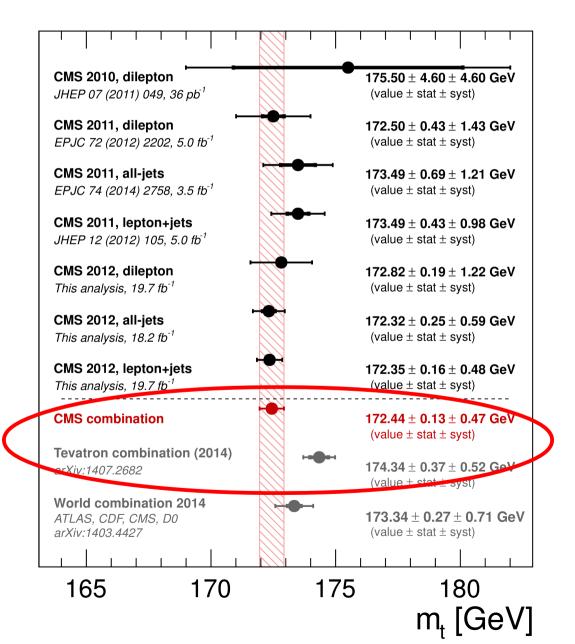
 Full event interpretation by least squares method, aka kinematic fit, is often used


Measuring the mass: sensitive observables

- In di-leptonic, things are not so simple
 - Two neutrinos
- One can still use observables highly correlated with the top mass, like M(lb)
- Or attempt full event reconstruction by solving for 6 unknowns (3-momenta of 2 neutrinos) with 5 constraints (2 components of E^{miss}_t, twice M_w, and M_t=M_t), and scanning for several M_t hypotheses used as 6th constraint
 - Solution is not unique: any mass constraint is a quadratic equation ⇒ 4x2 = 8-fold ambiguity ⇒ some criteria needed to pick the best

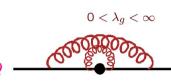

Top mass: results

ATLAS+CMS Preliminary LHC <i>top</i> WG	m _{top} summary, √s = 7-8 TeV	Aug 2016
World Comb. Mar 2014, [7] stat total uncertainty	total stat	
$m_{top} = 173.34 \pm 0.76 \ (0.36 \pm 0.67) \ GeV$	$m_{top} \pm total (stat \pm syst)$	√s Ref.
ATLAS, I+jets (*)	$172.31 \pm 1.55 \; (0.75 \pm 1.35)$	7 TeV [1]
ATLAS, dilepton (*)	$173.09 \pm 1.63 \; (0.64 \pm 1.50)$	7 TeV [2]
CMS, I+jets	173.49 ± 1.06 (0.43 ± 0.97)	7 TeV [3]
CMS, dilepton	$172.50 \pm 1.52 \; (0.43 \pm 1.46)$	7 TeV [4]
CMS, all jets	173.49 \pm 1.41 (0.69 \pm 1.23)	7 TeV [5]
LHC comb. (Sep 2013)	173.29 \pm 0.95 (0.35 \pm 0.88)	7 TeV [6]
World comb. (Mar 2014)	173.34 \pm 0.76 (0.36 \pm 0.67)	1.96-7 TeV [7]
ATLAS, I+jets	172.33 \pm 1.27 (0.75 \pm 1.02)	7 TeV [8]
ATLAS, dilepton	$173.79 \pm 1.41 \; (0.54 \pm 1.30)$	7 TeV [8]
ATLAS, all jets	───── 175.1±1.8 (1.4±1.2)	7 TeV [9]
ATLAS, single top	$172.2 \pm 2.1 \; (0.7 \pm 2.0)$	8 TeV [10]
ATLAS, dilepton	172.99 \pm 0.81 (0.34 \pm 0.74)	8 TeV [11]
ATLAS, all jets	173.80 ± 1.15 (0.55 ± 1.01)	8 TeV [12]
ATLAS comb. (^{June 2016})	172.84 \pm 0.70 (0.34 \pm 0.61)	7+8 TeV [11]
CMS, I+jets	172.35 \pm 0.51 (0.16 \pm 0.48)	8 TeV [13]
CMS, dilepton	172.82 \pm 1.23 (0.19 \pm 1.22)	8 TeV [13]
CMS, all jets	172.32 \pm 0.64 (0.25 \pm 0.59)	8 TeV [13]
CMS, single top	172.60 \pm 1.22 (0.77 \pm 0.95)	8 TeV [14]
CMS comb. (Sep 2015) ⊢ ਯ ⊣	172.44 \pm 0.48 (0.13 \pm 0.47)	7+8 TeV [13]
(*) Superseded by results [2] ATL shown below the line [4] Eur.	AS-CONF-2013-077 [7] arXiv:1403.4427 [1 P 12 (2012) 105 [8] Eur.Phys.J.C75 (2015) 330 [1	11] arXiv:1606.02179 12] ATLAS-CONF-2016-064 3] Phys.Rev.D93 (2016) 072004 14] CMS-PAS-TOP-15-001
165 170 17	5 180	185
		100
m _{ton}	[GeV]	
top		



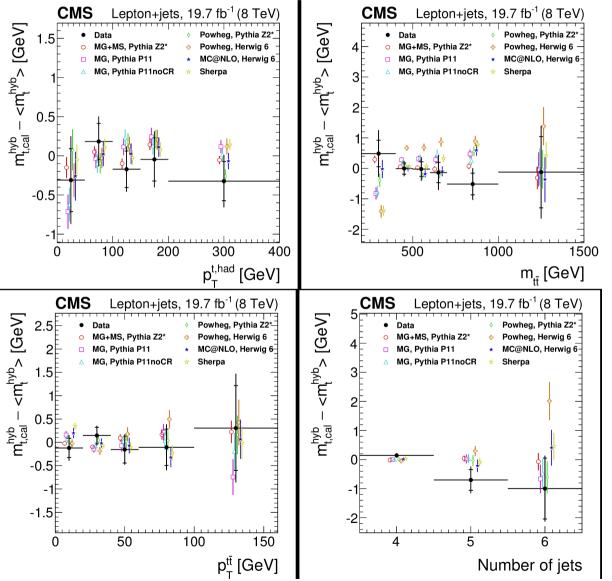
What are we measuring exactly?

- These results are impressively precise (±0.3/0.4%)
- So, now time to ask: are they also *accurate*?


Hint of a problem?

No big change from new Tevatron combination (FERMILAB-CONF-16-298-E): 174.30±0.35±0.54 GeV

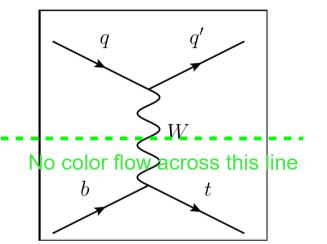
Pole mass m_{pole}

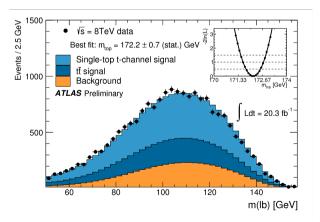

What are we measuring?

 m_{bare}

- Normally when we say "mass" we imply the "pole mass"
- But because of confinement, a quark is never observed isolated, hence its pole mass is unphysical: not an "observable"
- Top mass analyses are generally calibrated on MC simulation
- Are we just measuring a parameter called "top mass" in MC?
 - "MC mass" can be related to the pole mass, but with ambiguities from soft QCD, dependence on renormalization scheme, ...
- Very lively debate among QCD theorists about all that
 - Standard wisdom: theory uncertainty of order Λ_{ocn} ; no unanimity
- But apart from the exact relationship with pole mass, one may wonder: maybe we underestimate model systematics?

Some test


 Uncalibrated mass as function of several variables, chosen among the most sensitive to ISR/FSR, color reconnection, etc.


(more plots are in the paper)

 Conclusion: data and MC agree within the precision, for a variety of MC models

CMS coll., PRD 93 (2016) 072004

Another test: single-top-enriched samples

172.2±0.7(stat)±2.2(syst) GeV ATLAS-CONF-2014-055

172.6±0.7(stat)±1.0(syst) GeV CMS-PAS-TOP-15-001

- Single top production in t-channel mode is not a rare process: ~1/3 of tt
- Top candidate can be reconstructed, and used to extract a mass measurement
- Not included in combinations, because of much poorer precision with respect to $t\bar{t}$
 - Worse statistics
 - Larger background
 - Larger exp and modeling systematics
- But it is precious as a cross-check:
 - No color flow between the quark streams!
 - Conclusion: so far so good

Measuring the pole mass?

(b) D0 Preliminary, 9.7fb⁻¹

167.3 ± 2.6

 169.1 ± 2.5

172.8 + 3.3

 173.7 ± 2.2

 176.7 ± 2.9

 174.30 ± 0.65

172.84 ± 0.70

 172.44 ± 0.49

m^{pore} extractions

NLO vs. d o/dX

[This article] NNLO vs. do/dX

[This article]

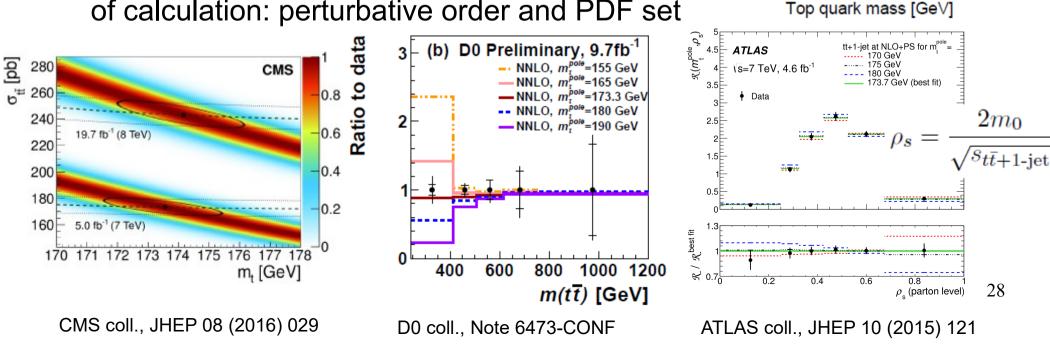
ATLAS (tt+1i)

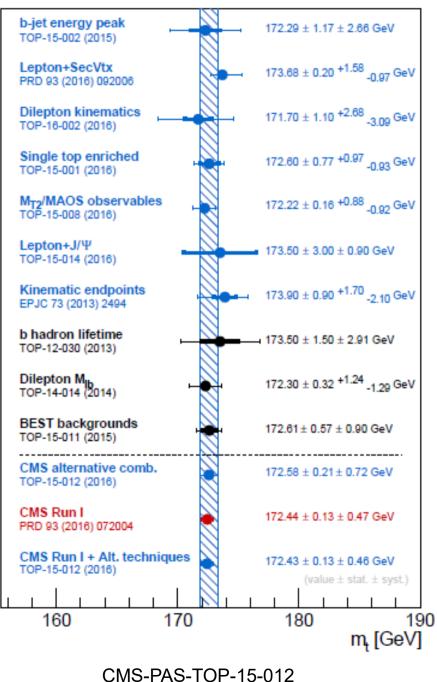
[JHEP 10 (2015)] CMS (NNLO+NNLL σ...

[PLB 728 (2014)]

Direct techniques Tevatron average

[arxiv:1608.01881] ATLAS average

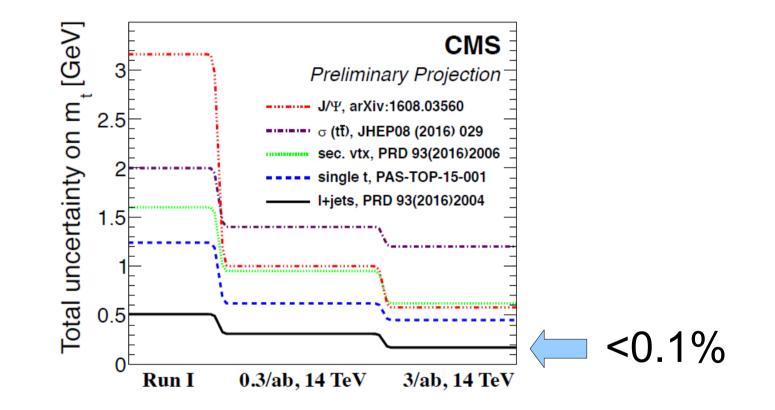

[arxiv:1606.02179] CMS combination


165 170 175

[PRD 93 (2016)]

D0 (NNLO+NNLL σ_{tot}) [arXiv:1605.06168]

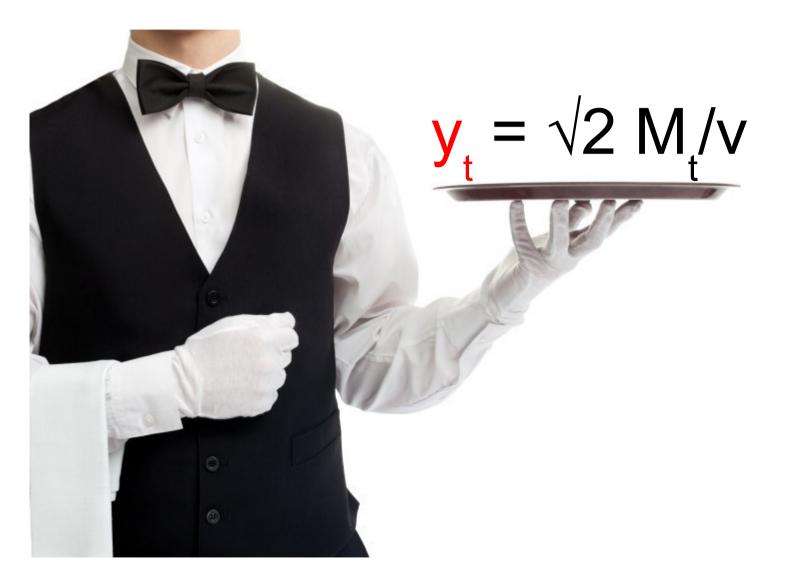
- It is not "observable", but it has effects
- Top production cross sections (inclusive and differential) strongly depend on pole mass
- Use them as indirect measurements of the pole mass itself
 - Result is well defined if you specify the details of calculation: perturbative order and PDF set

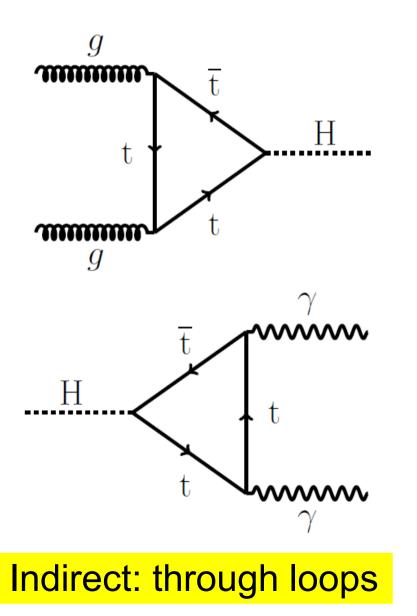

More tests

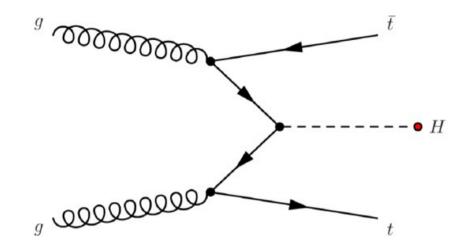
- Plethora of "alternative mass"
 measurements performed
 - Typically designed to have very different dominant uncertainties with respect to standard methods
 - (e.g., lepton + secondary vertex and lepton + J/ ψ have negligible dependence on JES)
- Taken one by one, not very insightful as cross-checks: poor precision
- Interesting exercise: what happens if you combine them all?
- Result: you get ±0.4% precision!
 - And so far so good

LHC-Tevatron discrepancy: hinting at something wrong?

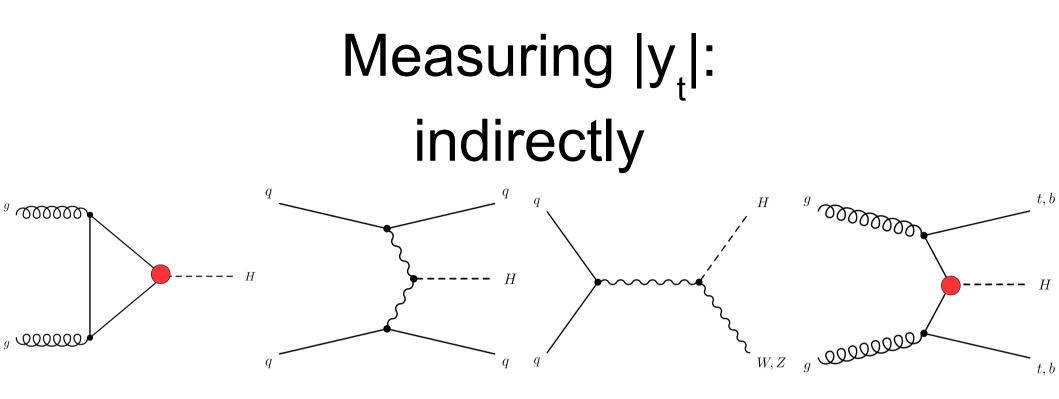
- Short answer: I don't know
- Tests are ongoing on both sides to check if there may be some unaccounted systematic
- Digression: human factors matter in science
 - Tevatron closed since years; hard to find personpower even for a high-profile analysis, even more difficult for a crosscheck of an already published result
 - However, the fact that many D0/CDF members are now CMS/ATLAS members sort of helps: some key people have access to technical details on both sides! (Risk of bias: larger or smaller?)
 - ATLAS I+jets analysis @ 8 TeV eagerly awaited: expected to significantly improve ATLAS-only combination and perhaps settle the issue

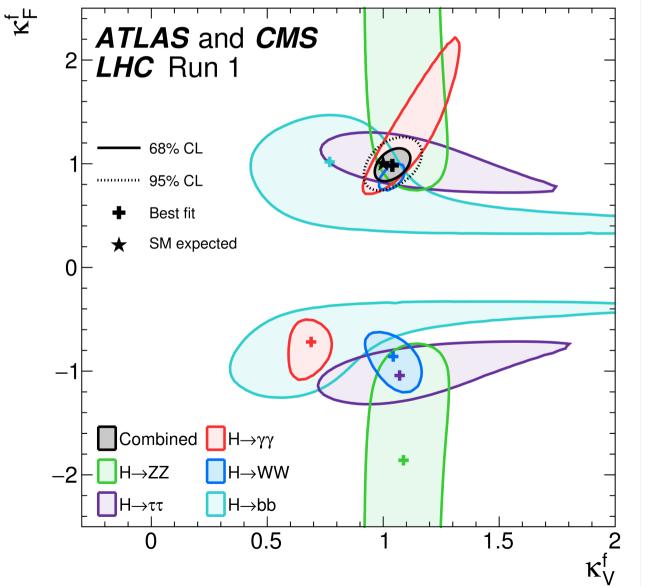

Future prospects for the top mass

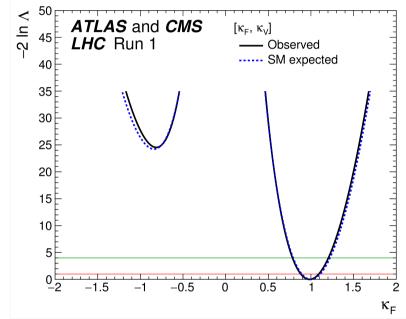

Plot from CMS-DP-2016-064


Assumptions: detector performance stays the same (i.e., harsher collision environment is perfectly compensated by detector upgrades), trigger efficiency is reduced to 1/3, and theory systematics are better constrained. ³¹ With 3/ab, all analyses expected to be systematics-limited.

Top-Higgs coupling

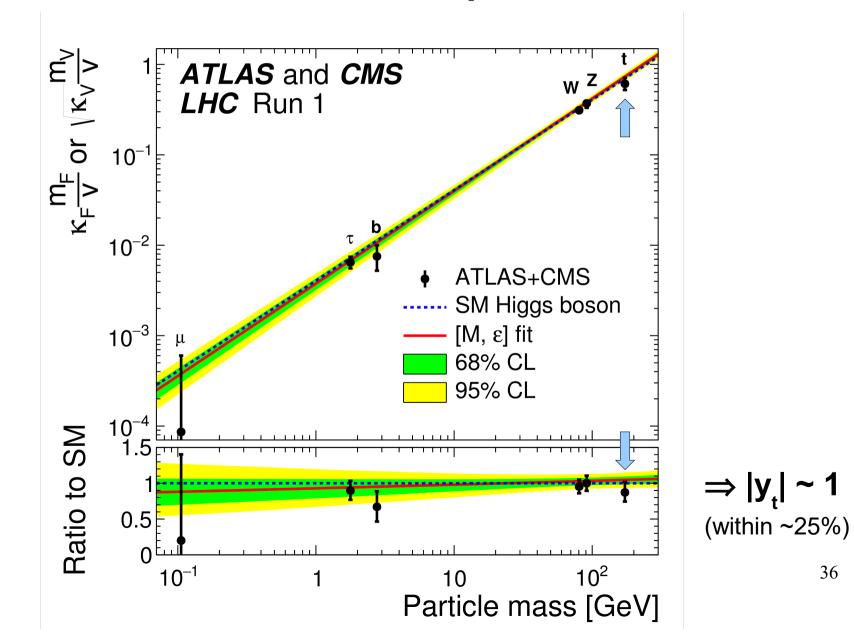

Measuring |y_t|

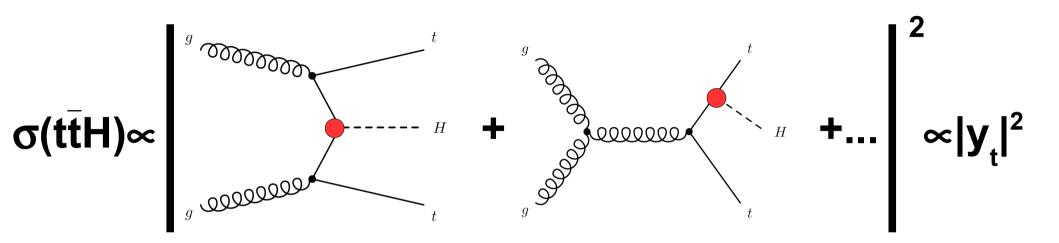

Direct: at tree level


General consideration: when sensitivity is induced by loops, one needs to rely more on some model assumptions (e.g., what particles run in the loop)

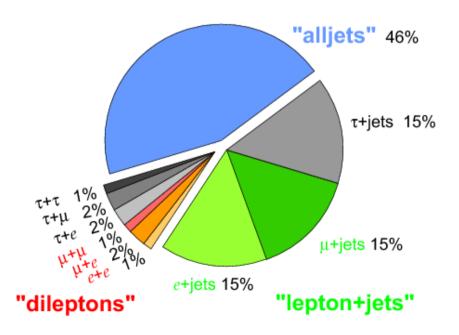
- Legacy ATLAS+CMS run-1 Higgs properties paper (*) combines many final states to extract constraints on several couplings, with several alternative parameterizations and assumptions
- Diagrams with indirect (loop) and direct (tree) sensitivity to the top-Higgs coupling are both considered but, at the current state, precision on this parameter is driven by the former
 - (For sake of clarity, I will not elaborate on the role of ttH and tH in this global combination; I present their explicit searches later)

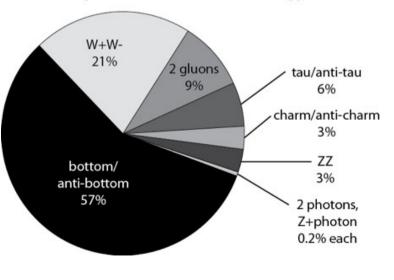
Fermion (k_F) and boson (k_V) coupling multipliers




This parameterization considers a single multiplier for all fermions. $k_F \sim 1 \Rightarrow y_t \sim 1$ (within ~25%)

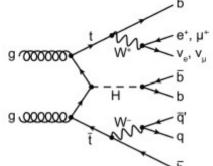
Assumption: no BSM in loops

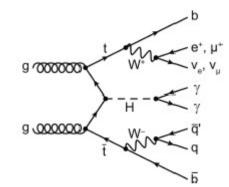

A test of the coupling-mass relationships


Measuring |y_t|: directly

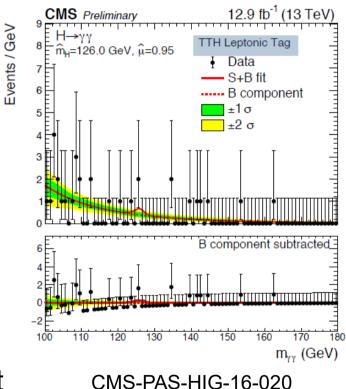
Top Pair Branching Fractions



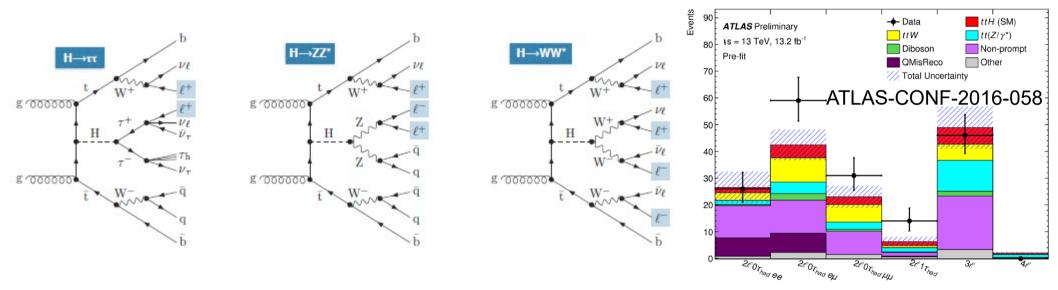

Decays of a 125 GeV Standard-Model Higgs boson


Searches for ttH: bb channel

- Pros:
 - Largest BR (~60%)
 - Large multiplicity of jets and b-tags
- Cons:
 - Overwhelming tt+jets background
 - Heavy flavour component of bkg is poorly constrained
 - Very large combinatorics of jet-parton associations
- Approaches:
 - Use several combinations of lepton / jet / b-tag multiplicities in simultaneous fit; it helps a lot in constraining bkg fractions
 - (MVA for jet-parton association, followed by) MVA for classification
 - Alternative: Matrix Element Method (more sensitive but more work) 38

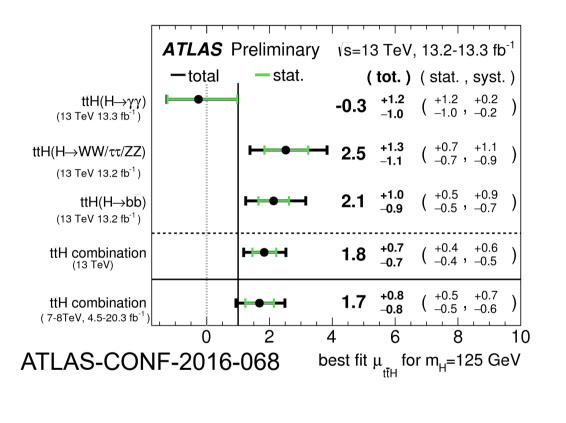


Searches for tτH: γγ channel



• Pros:

- High-resolution mass peak
- Background: smoothly falling mass spectrum
- Cons:
 - Small branching ratio (~0.2%)
- Approach:
 - Target events with 0 or 1 leptons from tops
 - Part of general γγ analysis where events are categorized by additional objects ("tags") to get discrimination power between production modes



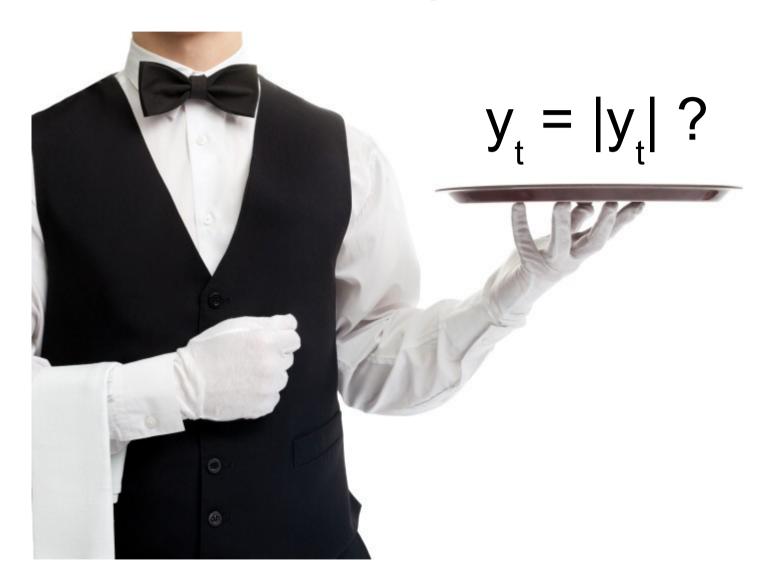
Searches for ttH: multi-lepton

- Very clean selections: 2 same-sign leptons, or ≥3 leptons
 - Target final states with at least one leptonic top decay and more leptons from H→ττ (6.3%), H→ZZ (2.6%), H→WW (21.5%)
- Most challenging background is tt with non-prompt leptons (b/c→l, π/K→l, γ→e⁺e⁻) or lepton charge confusion
 - Specific lepton-ID optimized for this analysis
 - Control regions to estimate fake rate and charge confusion

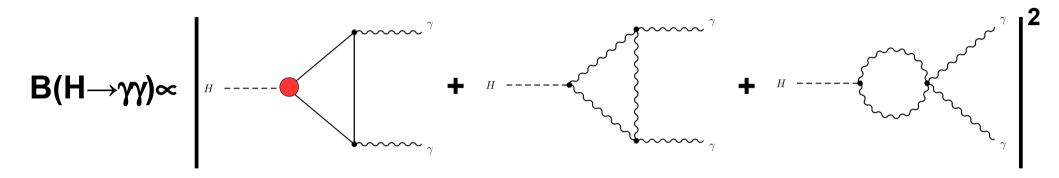
Searches for ttH: latest results (Run-2)

CMS (13-15/fb):

• H→γγ: μ = 1.9^{+1.5} -1.2 CMS-PAS-HIG-16-020

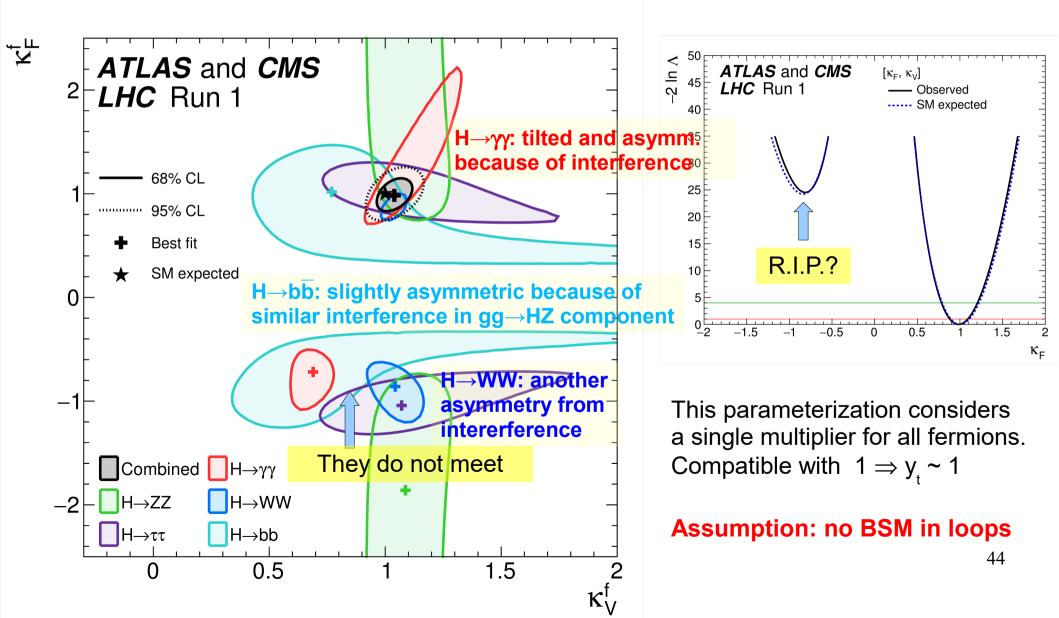

• Multilepton: $\mu = 2.0^{+0.8}$ CMS-PAS-HIG-16-022

• H→bb: μ = -0.2±0.8 CMS-PAS-HIG-16-038

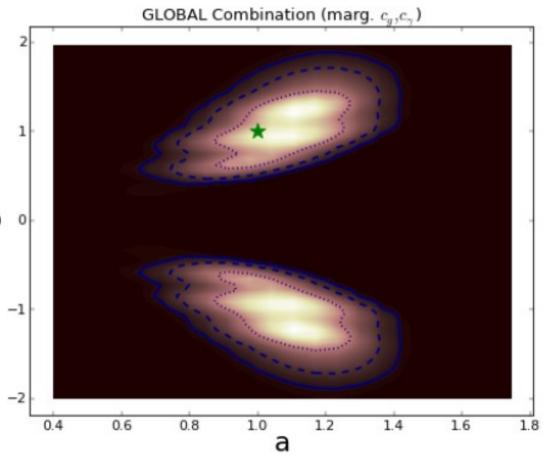

LHC Run-1 combination: • $\mu = 2.3^{+0.7}_{-0.6}$

~40% uncertainty on signal strength (μ) \Rightarrow ~20% on y_t ($\mu \equiv \sigma_{obs}^{}/\sigma_{exp}^{} \propto y_t^2 \Rightarrow \Delta \mu/\mu = 2\Delta y_t^{}/y_t$) Extrapolations to HL-LHC: reach $\Delta y_t^{}/y_t^{}$ ~10% asymptotically (further progress only by reducing theory uncertainties)

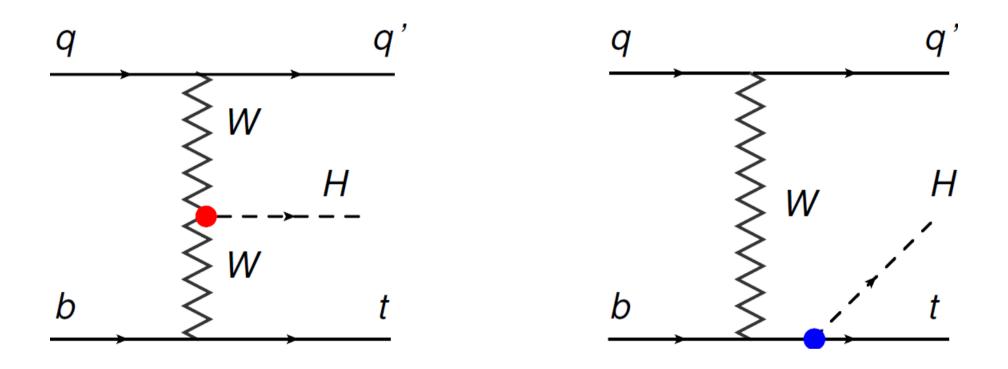
Real and positive?



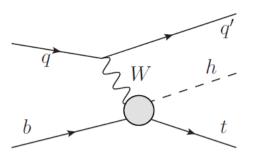
Use interference


- This branching ratio has both a quadratic and a linear term in y, the latter coming from interference
- Fermion loops and boson loops have amplitudes of opposite sign \rightarrow destructive interference in SM
- Swapping the sign of y_t makes interference constructive, and BR enhanced by 2.4 times

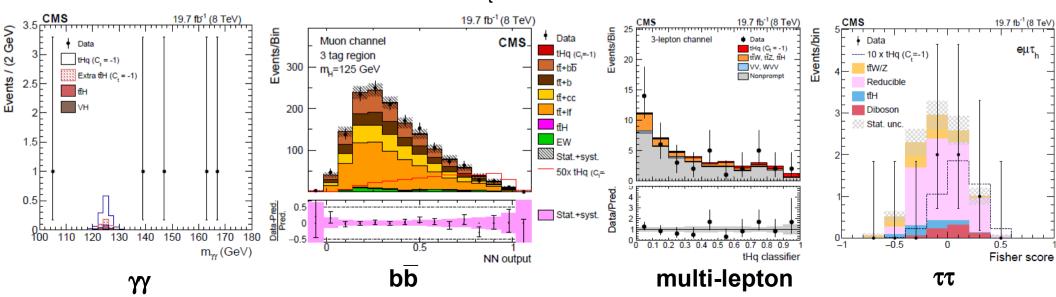
The case is closed?



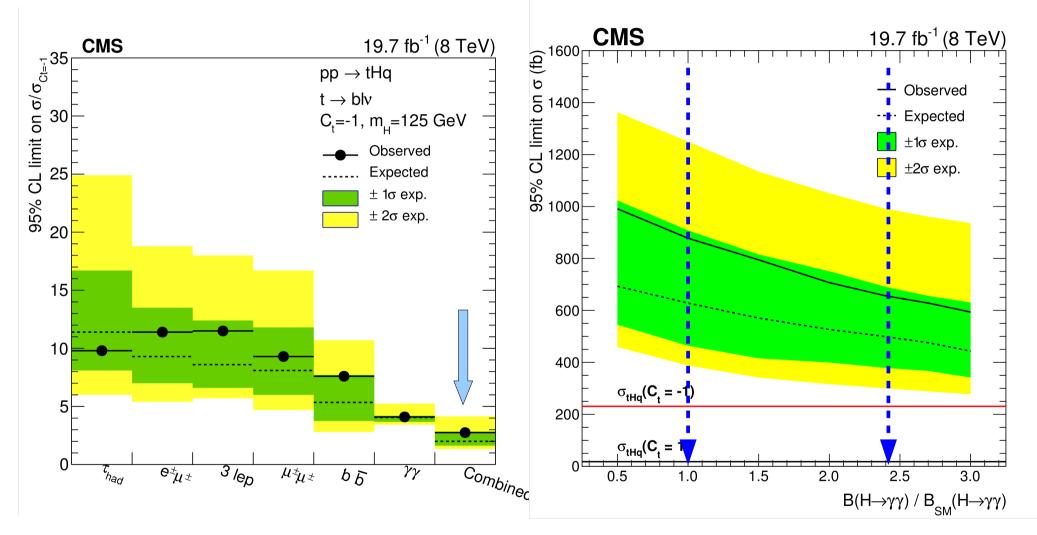
Remove that assumption and...


- J.Ellis, T.You, JHEP 06 (2013) 103, arXiv:1303.3879
 - Based on home-made combination of CMS, ATLAS, and Tevatron (not up to date, but here it doesn't matter)
- Here *a,c* have similar meaning as k_v, k_F
- In the plot reproduced here, BSM contributions are allowed in ggH and Hγγ loops and marginalised, and the minima are degenerate

Looking for a better "interferometer"



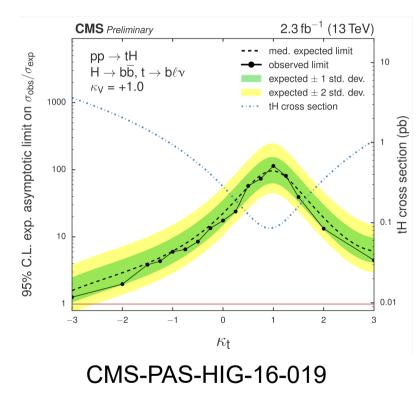
- In tHq production, accidentally (*) strong cancellation at tree level in the SM (only 18 fb @ 8 TeV)
 - (*) note: the same that plays a role in the "naturalness" problem...
- Hence, strong enhancement (~13x) if the relative sign
 between HWW and Htt couplings turns out to be negative

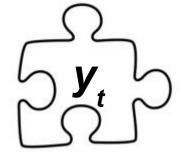

tH: Run-1 analyses CMS coll., JHEP 06 (2016) 177

- Search was performed in $\gamma\gamma$, $b\overline{b}$, multi-lepton, $\tau\tau$ decays
- Common features:
 - Top quark always assumed to decay leptonically
 - Pseudorapidity of "recoil quark" (q') is a good discriminant
 - Exploiting dominance of top over anti-top in signal
 - Analyses optimized for y_t=-1

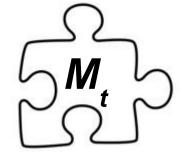
tH: Run-1 combination

CMS coll., JHEP 06 (2016) 177


Observed (expected) limit: 2.8 (2.0) times the expectation for $y_t = -1$

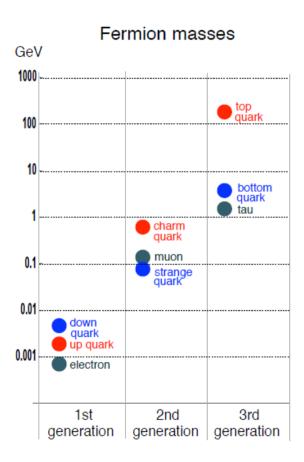

This plot assumes $B(H \rightarrow \gamma \gamma) = 2.4 \text{xSM}$

This plot is agnostic about $B(H \rightarrow \gamma \gamma)^{-48}$


tH: Run-2 status

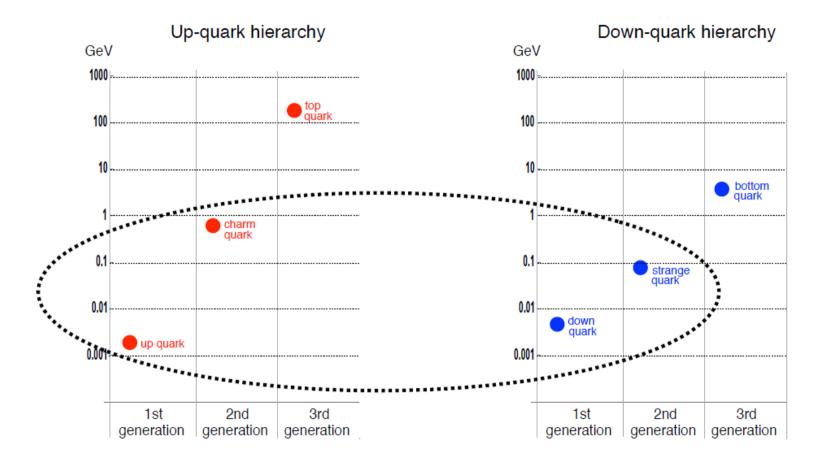
- Cross section: 4x from 8 to 13 TeV
- Preliminary result in bb channel with 2015 data (2.3/fb) is available
 - Similar analysis but multi-MVA optimized across the (k_F,k_V) plane
 - Not improving over Run-1 yet, but:
 - Inclusion of tHW as part of signal
 - More theory interpretations
- Other channels: work in progress
 - A priori, di-photon "golden channel" is expected to drive the sensitivity in the combination of 2016 data (as it did in Run-1)

Summary

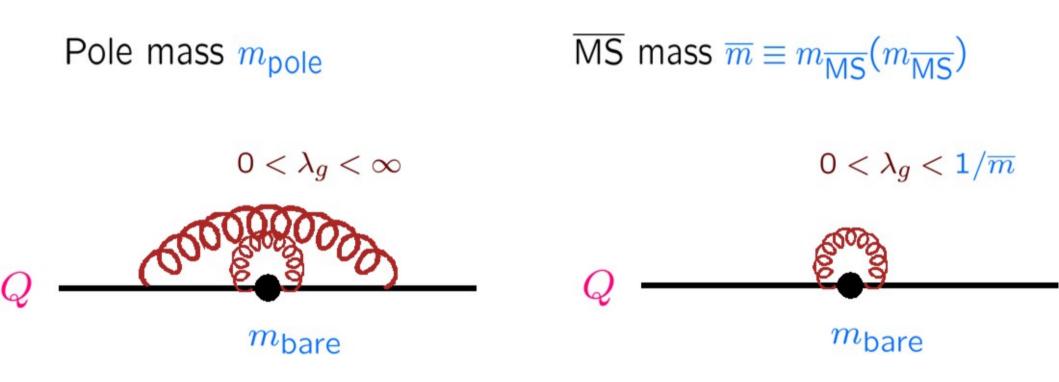


- The fermion mass pattern is a puzzle
- And the top-Higgs coupling is really close to 1; who ordered that? Does it *mean* something?
- Is it 1 or just very close? Real or complex?
- If we answer those questions, will we unlock the solution to the puzzle?
- We are attacking the problem from many experimental directions, all quite challenging
- Work in progress. Stay tuned!

Thanks for your attention

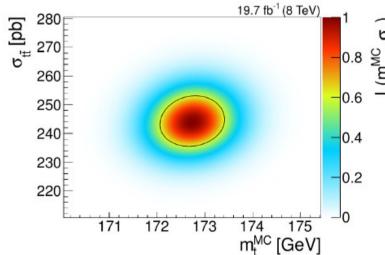

And thanks to Martijn Mulders, André David, Matthias Komm, Georgios Krintiras, for their comments and suggestions during the preparation of this talk

A different look at it (1)


From Gilad Perez

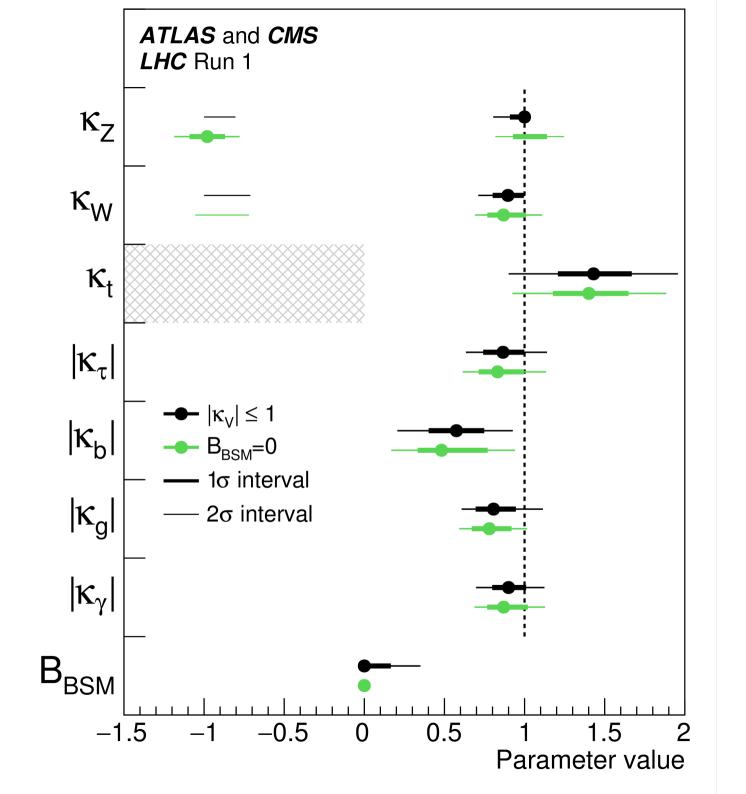
A different look at it (2)

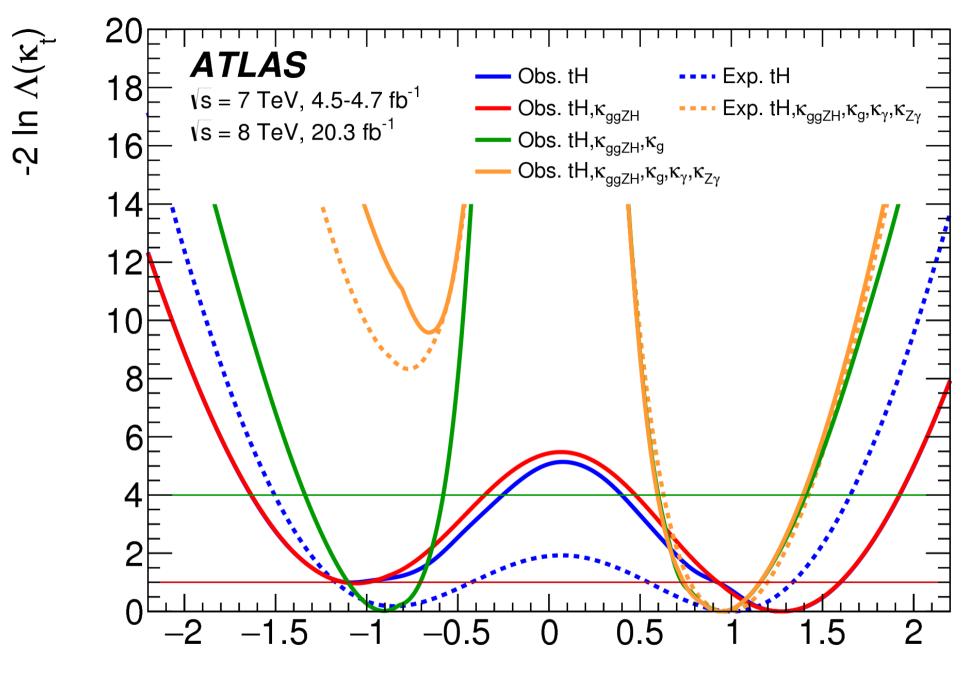
From Gilad Perez


Masses

From arXiv:1407.5353 [hep-ph]

Top mass meaurements: MC <u>and</u> pole?


J.Kieseler, K.Lipka, O.Moch, "Calibration of the Top-Quark Monte Carlo Mass", Phys.Rev.Lett. 116 (2016) 16, 162001, arXiv:1511.00841 [hep-ph]


We present a method to establish experimentally the relation between the top-quark mass m_t^{MC} as implemented in Monte-Carlo generators and the Lagrangian mass parameter m_t in a theoretically well-defined renormalization scheme. We propose a simultaneous fit of m_t^{MC} and an observable sensitive to m_t , which does not rely on any prior assumptions about the relation between m_t and m_t^{MC} . The measured observable is independent of m_t^{MC} and can be used subsequently for a determination of m_t . The analysis strategy is illustrated with examples for the extraction of m_t from inclusive and differential cross sections for hadro-production of top-quarks.

Main top mass measurement techniques

- Template method:
 - Compare data with templates from simulation with different masses
- Ideogram method:
 - Signal event likelihood from Breit-Wigner convoluted with detector response
- Matrix Element method:
 - Event likelihood as a function of observed final state configuration, from the (LO) matrix element (which is a function of top mass in the signal case)

Production	Loops	Interference	Expression in fundamental coupling-strength scale factors	
$\sigma(\text{ggF})$	\checkmark	b-t	$\kappa_g^2 \sim$	$1.06 \cdot \kappa_t^2 + 0.01 \cdot \kappa_b^2 - 0.07 \cdot \kappa_t \kappa_b$
$\sigma(\text{VBF})$	-	-	~	$0.74 \cdot \kappa_W^2 + 0.26 \cdot \kappa_Z^2$
$\sigma(WH)$	-	-	\sim	κ_W^2
$\sigma(q\bar{q} \to ZH)$	-	-		κ_Z^2
$\sigma(gg \to ZH)$	\checkmark	Z- t	$\kappa^2_{ggZH} \sim$	$2.27 \cdot \kappa_Z^2 + 0.37 \cdot \kappa_t^2 - 1.64 \cdot \kappa_Z \kappa_t$
$\sigma(bbH)$	-	-		κ_b^2
$\sigma(ttH)$	-	-		κ_t^2
$\sigma(gb \to WtH)$	-	$W\!\!-\!\!t$		$1.84 \cdot \kappa_t^2 + 1.57 \cdot \kappa_W^2 - 2.41 \cdot \kappa_t \kappa_W$
$\sigma(qb \to tHq')$	-	$W\!\!-\!\!t$	\sim	$3.4 \cdot \kappa_t^2 + 3.56 \cdot \kappa_W^2 - 5.96 \cdot \kappa_t \kappa_W$
Partial decay width				
$\Gamma_{bar{b}}$	-	-		κ_b^2
Γ_{WW}	-	-	\sim	κ_W^2
Γ_{ZZ}	-	-	\sim	κ_Z^2 κ_Z^2 κ_τ^2 κ_μ^2
$\Gamma_{\tau\tau}$	-	-	\sim	κ_{τ}^2
$\Gamma_{\mu\mu}$	-	-	~	κ_{μ}^2
$\Gamma_{\gamma\gamma}$	\checkmark	$W\!\!-\!\!t$		$1.59 \cdot \kappa_W^2 + 0.07 \cdot \kappa_t^2 - 0.66 \cdot \kappa_W \kappa_t$
$\Gamma_{Z\gamma}$	\checkmark	$W\!\!-\!\!t$	$\kappa_{Z\gamma}^2 \sim$	$1.12 \cdot \kappa_W^2 + 0.00035 \cdot \kappa_t^2 - 0.12 \cdot \kappa_W \kappa_t$
Total decay width				
Γ_H	\checkmark	W-t	$\kappa_{H}^{2} \sim$	$0.57 \cdot \kappa_b^2 + 0.22 \cdot \kappa_W^2 + 0.09 \cdot \kappa_g^2 +$
		b-t		$0.06 \cdot \kappa_{\tau}^{2} + 0.03 \cdot \kappa_{Z}^{2} + 0.03 \cdot \kappa_{c}^{2} +$
				$0.0023 \cdot \kappa_{\gamma}^2 + 0.0016 \cdot \kappa_{Z\gamma}^2 + 0.00022 \cdot \kappa_{\mu}^2$

 κ_t