Sapienza Università di Roma Dipartimento di Fisica PhD school in accelerator physics XXX cycle

3rd year admission talk

Proposed title:

"Advanced beam diagnostics and beam protection for high-brightness electron-beam"

Supervisor: Luigi Palumbo

Co-supervisor: David Alesini

Outline

- ELI-NP GBS overview and layout
- Machine Protection System
 - Architecture design
 - Fast-Interlock
 - o Real-time waveform mask
 - Magnets and Vacuum PLCs
 - Supervisor
 - o Distributed Cherenkov Beam Loss Position monitor
 - o Hall probe monitor
 - Next steps
- Electron beam performance monitor

ELI-NP Gamma Beam Source

Gamma beam params	
Energy	0.2 – 20 MeV
Spectral density	$0.8 - 4 * 10^4 \frac{ph}{s * eV}$
Bandwidth (RMS)	< 0.5 %
Peak brillance	$> 10^{20} \frac{ph}{s*mm^2*mrad^2*0.1\%}$
Spot size	10 – 30 μm

Electron beam params	
Energy	75 – 740 MeV
Bunch charge	25 – 400 pC
Number of bunches/pulse	32
Bunch distance	16 ns
Bunch length	100 – 400 μm
Pulse length	512 ns
Energy spread (RMS)	0.04 - 0.1%
Norm. Emittance	o.4 mm * mrad
RF repetition rate	100 Hz

Compton back-scattering gamma source from the interaction of an high brightness electron beam and high power laser pulse.

MPS: Architecture design

- Integrated with all machine sub-systems
- Fast response to protect critical system (less then 10 ms)
- Robust with a failsafe design and rich self-diagnostics
- Smart configurable logic matrix
- Flexible easily modify, extend and optimize

MPS: Architecture design

MPS: Fast-Interlock system topology

- real-time FPGA-based
- distributed I/O framework
- hardwired to critical system
- > avoid single point of failure

MPS: Fast-Interlock system topology

- real-time FPGA-based
- distributed I/O framework
- hardwired to critical system
- > avoid single point of failure

MPS: Fast-Interlock system topology

- real-time FPGA-based
- distributed I/O framework
- hardwired to critical system
- > avoid single point of failure

MPS: Fast-Interlock performance

Principal features:

- Each Fast-ILK system monitors a region of vacuum from different gauges and ion-pumps then if one of these has a failure this affects only one Fast-ILK system.
- The Fast-ILK system handles vacuum events from accelerating cavities, WGs, LBCs, Gamma diag. and transfer lines.
- The Fast-ILK system provides safe procedures for modulators conditioning or normal operation operating on LLRF.
- The Fast-ILK system try to dissect the vacuum region where a vacuum leak is detected and closing the RF Gun valve.
- The Fast-ILK system operates as front-end of Personnel Protection System for RF systems.

Performance:

- EtherCAT network latency: less then 100 μs (jitter less then 1 μs)
- Detection time:
 - Vacuum gauges: ~20 ms
- Execution time (Fast-ILK): less than 1 ms
- Execution time (devices):
 - Modulator: + 10 μs,
 - LiberaLLRF: + 10 μs,
 - Lasers shutters: (TBD),
 - Pneumatic valves: + 25 ms (PLC) + 1/2 s (for DN40/63 valves)

Prototype

MPS: Fast-Interlock WFM mask

Scope of work: monitor real-time RF-signals to detect anomalous vacuum activity in WG and accelerating structures and operate RF systems in less than 10 ms.

Specifications:

- Sample real-time 1,5 μs reflected RF signal from a directional coupler;
- Analyze sampled signal;
- Trip RF Modulator in less than 10 ms.

ELI-NP RF-GUN

Rep. Rate	100 Hz
Working mode	П mode (SW)
Max RF input	16 MW
RF peak field	120 MV/m
Filling time	420 ns
Unloaded Q factor	15000

RF-Gun conditioning Bonn 12/2015

MPS: Fast-Interlock wfm mask

Scope of work: monitor real-time RF-signals to detect anomalous vacuum activity in WG and accelerating structures and operate RF systems in less than 10 ms.

Specifications:

- Sample real-time 1,5 μs reflected RF signal from a directional coupler;
- Analyze sampled signal;
- Trip RF Modulator in less than 10 ms.

Healthy signal

Upper mask Lower mask Reflected RF

MPS: Fast-Interlock wfm mask

Scope of work: monitor real-time RF-signals to detect anomalous vacuum activity in WG and accelerating structures and operate RF systems in less than 10 ms.

Specifications:

- Sample real-time 1,5 μs reflected RF signal from a directional coupler;
- Analyze sampled signal;
- Trip RF Modulator in less than 10 ms.

Bad signal

Upper mask Lower mask Reflected RF

MPS: Fast-Interlock wfm mask

Scope of work: monitor real-time RF-signals to detect anomalous vacuum activity in WG and accelerating structures and operate RF systems in less than 10 ms.

Specifications:

- Sample real-time 1,5 μs reflected RF signal from a directional coupler;
- Analyze sampled signal;
- Trip RF Modulator in less than 10 ms.

Bad signal

Upper mask Lower mask Reflected RF

Tested Real-time up to 1 kHz!

"The WaveCatcher family of SCA-based 12-bit 3.2 GS/s fast digitizers"

D. Breton, E. Delagnes, J. Maalmi, P. Rusquart

Digitizer specs:

Sampling Rate	3,2 GS/s
Sample depth	12-bit
BW	o,5 GHz
Memory	128 B
Cost/channel	400€

MPS: Magnets and Vacuum PLCs

Specifications:

- 20 Omron PLC distributed among the technical rooms.
- 20 Vacuum regions
- 17 valves drived from boundary vacuum gauges.
- Interfaced with the EPICS network and Fast-ILK.
- VAT Fast Closing Valve system in M1 with dedicated vacuum gauge in M6 (distance ~16 m).

Performance:

- Detection time:
 - Vacuum gauges: ~60 ms,
 - Fast Valve vacuum gauge: 2 ms
- Execution time:
 - ~25 ms + 1 /2 s (for DN40/63 valves),
 - Fast Valve shutter: 5 ms (able to stop shockwave from both interaction point: from gauge to shutter a Mach-2 shockwave require 30 ms).

MPS: Supervisor

Specifications:

- 1 + 1 (auxiliary) IOC running in parallel servers.
- Integrated in the EPICS network: able to reach all subsystems.
- Interfaced with MPS sub-systems:
 - interlock hardware (Fast-ILK and PLCs)
 - Interlock software (EPICS)
 - BLMs

Performance:

- EPICS network latency: ~100 ms,
- Execution time: less then 10 ms

Scope of work: map beam loss along whole accelerator to enable operation for machine and personnel safety.

Specifications:

- Locate beam loss and the involved device of lattice.
- Trip RF-Gun and Photo Cathode laser.

Split the facility in different trunk (max. length of 20 m) avoid background saturation due to the dark current transport.

Scope of work: map beam loss along whole accelerator to enable operation for machine and personnel safety.

Specifications:

- Locate beam loss and the involved device of lattice.
- Trip RF-Gun and Photo Cathode laser.

$$\cos \theta_C(\lambda) = \frac{1}{\beta n(\lambda)}$$

$$\cos 0 = \frac{1}{\beta n(\lambda)}$$
 $\beta = \frac{1}{n} \approx 0.7$

$$\theta_C = \begin{cases} 17^{\circ} & \text{if } \beta \approx 0.7 \\ 48^{\circ} & \text{if } \beta \approx 1 \end{cases}$$

$$\varphi < \varphi_{max} = \sin^{-1} \frac{NA}{n} = 8.4^{\circ}$$

$$\theta = \begin{cases} [8.6^{\circ} - 25.4^{\circ}] & \text{if } \beta \approx 0.7 \\ [40.6^{\circ} - 56.4^{\circ}] & \text{if } \beta \approx 1 \end{cases}$$

Cherenkov cone semi-angle

Cherenkov energy threshold

Total internal reflection limit angle

Charged particles angle through the fiber (to be trapped from sensor side, other side is suppressed by critial angle cut)

$$\frac{dN}{dx \, d\lambda} = \frac{2\pi\alpha}{\lambda^2} \sin^2 \theta_C = \begin{cases} 2 \, \frac{ph}{mm} \, if \, \theta_C = 17^{\circ} \\ 13 \, \frac{ph}{mm} if \, \theta_C = 48^{\circ} \end{cases}$$

Cherenkov photons from a single charged particle

 $\lambda = [400 \, nm - 500 \, nm]$ Light wavelength

lpha Fine structure constant

Scope of work: map beam loss along whole accelerator to enable operation for machine and personnel safety.

Specifications:

- Locate beam loss and the involved device of lattice.
- Trip RF-Gun and Photo Cathode laser.

"The WaveCatcher family of SCA-based 12-bit 3.2 GS/s fast digitizers"

D. Breton, E. Delagnes, J. Maalmi, P. Rusquart

Digitizer specs:

Sampling Rate	3,2 GS/s
Sample depth	12-bit
BW	o,5 GHz
Memory	128 B
Cost/channel	400€

$$\Delta s = \Delta t \ c \left(\frac{1}{\beta} + n\right)^{-1}$$
 Optical fiber nominal longitudinal resolution

@3,2 GS/s time-of-flight resolution ~4 cm

- Array of 400 avalanche photodiodes (APDs) connected in parallel
- Reverse bias (photon causes APD breakdown)
- Photomultiplier-like gain (105 106)
- Insensitivity to magnetic field
- Time resolution: rise time 100 ps
- Compact and Low cost

Scope of work: map beam loss along whole accelerator to enable operation for machine and personnel safety.

Specifications:

- Locate beam loss and the involved device of lattice.
- Trip RF-Gun and Photo Cathode laser.

Distance between AC2FLAG and AC3FLAG

Distance from CAD	3,5 m
Time-of-flight difference	~ 30 ns
Reconstructed distance from Cherenkov BLPM	~ 3,6 m
Sampling rate	1 GS/s
DAQ accuracy	+/- 15 cm

MPS: Supervisor Hall Probes

Scope of work: monitor B field inside the 9 dipoles to verify the matching between magnet field and power supply current set-point.

Specifications:

- Acquire bipolar B field between 0.4 T and 1.6 T;
- Convert probe signal from raw data to supplied current.
- Trip RF-Gun and Photo Cathode laser.

MPS: Supervisor Hall Probes

Scope of work: monitor B field inside the 9 dipoles to verify the matching between magnet field and power supply current set-point.

Specifications:

- Acquire bipolar B field between 0.4 T and 1.6 T;
- Convert probe signal from raw data to supplied current.
- Trip RF-Gun and Photo Cathode laser.

Hall probe specs:

Full scale	+/- 2 T
Signal Amplitude	+/- 10 V
BW	200 kHz
Noise	< 1 mV _{p-p}
Working temp.	10 – 50 °C

DAQ specs:

Signal Amplitude	+/- 10 V
Sample depth	16-bit
вw	10 MHz
Accuracy	+/- ~2 mV
Accuracy (B field)	+/- ~4 G

1 Calibration

Lookup table to convert from signal amplitude to magnetic field.

2 Calibration

Dipole excitation curve (provided by manufacture) to convert magnetic field to supplied current.

Monitor

Check mismatch between power supply and Hall probe current setpoint.

MPS: Next Steps

- Fast-ILK Finalize FPGA software development
- Waveform Mask ready!
- Supervisor Finalize software development
- Cherenkov BLPM Calibrate all optical fiber + MPPC setups with a pulser
- Hall probes Calibrate probe + magnet + power supply
- Tuning and Site Acceptance Test

Electron beam performance monitor

- Scope of work:
 - Electron beam current monitor
 - Electron beam position monitor
 - Electron beam sigma monitor
 - Non-intercepting measure
 - Low-Q to measure multi-bunch beams (ELI-NP like)
 - Real time
- EM Design
- Mechanical design
- Test

Next year!

This device can monitor the electron beam just before and after the IP to handle the quality of the gamma source

