

## Talk's Layout

- why underground
- highlights from LUNA
  - LUNA phase I (1992-2001)
  - LUNA phase II (2000-present)
  - LUNA phase III (2015-2018)
- future projects
  - LUNA MV (Europe)
  - CASPAR (US)
  - Felsenkeller (Europe)

## Nuclear Astrophysics

- interdisciplinary branch of physics involving nuclear physics and astrophysics
- to understand how nuclear processes generate the energy of stars over their lifetimes
- desired cross sections among the smallest measured in the nuclear laboratory
- long data-collection with attention to background

## **Nuclear Astrophysics**

- ion energy follows the Maxwell-Boltzmann distribution
- since the fraction of nuclei having the necessary energy to overcome the Coulomb barrier is negligible, reactions between charged particles in stars occur through tunneling of the Coulomb barrier, resulting in very small interaction cross sections



- the convolution of the above mentioned functions determines a relatively narrow energy window, the "Gamow window"
- represents the effective energy window in which most charged particle induced nonresonant thermonuclear reactions occur



# **Thermonuclear Reactions in Lab** low cross sections $\rightarrow$ low yields $\rightarrow$ poor signal-to-noise ratio Yield = N<sub>p</sub> x N<sub>t</sub> x cross section x detection efficiency

10<sup>19</sup> atoms/cm<sup>2</sup> typical solid state targets 10<sup>-15</sup> barn (often even smaller) Y = 0.3-30 counts/year 10<sup>0%</sup> for charged particles ~1% for gamma rays

- improving signal (beam currents, target densities, efficiency)
- reducing noise (i.e. background)
- a combination of both

#### Experimental Challenges & Key Requirements

- long term stability & high energy-accuracy
- ultra pure targets & known stoichiometry
- high detection efficiency
- wide energy ranges for reliable extrapolations
- concurrent measurements with different techniques to minimize systematic dependencies

#### DEDICATED (UNDERGROUND) FACILITY

## Sources of $\gamma$ -ray Background

- natural radioactivity (from U and Th chains and from Rn)
- cosmic rays (muons, <sup>1,3</sup>H, <sup>7</sup>Be, <sup>14</sup>C, ...)
- neutrons from  $(\alpha, n)$  reactions and fission







first (and so far only) underground accelerator in the world

### γ-ray Background at LUNA



Costantini et al. Rep. Prog. Phys. 72 (2009) 086301

10

Which reactions can (should) be studied underground?

- high Q-value radiative capture reactions
- reactions producing neutrons
- some reactions producing charged particles
- reactions not limited by beam-induced background

### Gran Sasso National Laboratory



#### LUNA Phase I (1992-2001): 50 kV accelerator

investigate reactions in solar pp chain



## 90° analysing magnet

duoplasmatron ion source on 50kV platform



entirely built by students! <sup>13</sup>

#### The <sup>3</sup>He(<sup>3</sup>He, 2p)<sup>4</sup>He Reaction and the Solar Neutrino Puzzle



no extrapolation needed; no new resonance found

3onetti et al. Phys. Rev. Lett. 82 (1999) 5205

#### LUNA 400kV site



#### The LUNA 400KV Underground Laboratory



## The ${}^{14}N(p,\gamma){}^{15}O$ reaction

#### slowest reaction in CNO cycle



A. Lemut et al Phys Lett B634 (2006) 483 A. Formicola et al. PL B591 (2004) 61-68 G. Imbriani et al. A&A 420 (2004) 625

Ο

Ν

С

6

solar neutrino flux from CNO reduced by factor 2

age of globular cluster increased by 1Gy !!

or 2

**CNO** cycle

13

7

15

8

#### $^{23}$ Na(p, $\gamma$ ) $^{24}$ Mg at LUNA

Direct measurements underground at LNGS: solid target, two shielded detector setups. Data taking of both phases concluded. Analysis ongoing.



#### Alpha background and low resonance study of the <sup>17</sup>O(p, $\alpha$ )<sup>14</sup>N reaction Underground+Pb vs. Overground factor ~10-15 reduction in the range 200 keV - 2.5 MeV 8 Si det



• <sup>17</sup>O(p,  $\alpha$ )<sup>14</sup>N Expected alpha energy about 1 MeV

 Two narrow resonances at 70 and 193 keV dominant at astrophysical temperatures PRL in print<sup>19</sup>

### The ${}^{13}C(\alpha, n){}^{16}O$ reaction

Cat's Eve

importance: s-process in AGB stars Gamow region: 130 - 250 keV min. measured E: 270 keV



### LUNA's Achievements to Date

- electron screening & stopping power d(<sup>3</sup>He,p)<sup>4</sup>He and <sup>3</sup>He(d,p)<sup>4</sup>He
- solar fusion reactions  ${}^{3}$ He( ${}^{3}$ He,2p) ${}^{4}$ He,  ${}^{2}$ H(p, $\gamma$ ) ${}^{3}$ He,  ${}^{3}$ He( $\alpha$ , $\gamma$ ) ${}^{7}$ Be
- CNO and Mg-Al cycles
   <sup>14</sup>N(p,γ)<sup>15</sup>O, <sup>15</sup>N(p,γ)<sup>16</sup>O, <sup>25</sup>Mg(p,γ)<sup>26</sup>Al
- explosive hydrogen burning in novae and AGB stars  $^{17}O(p,\gamma)^{18}F$ ,  $^{17}O(p,\alpha)^{14}N$
- BBN and the lithium problem  $^{2}\text{H}(\alpha,\gamma)^{6}\text{Li}$
- NeNa cycle

over 50 publications (including 13 Letters, 2 Reviews) and numerous Master and PhD Theses

## Training Opportunities

hands-on experience on:

- ion source and accelerator systems
- beam transport and optimization
- vacuum systems
- target preparation and characterization
- detection systems and electronics
- data acquisition techniques and data analysis
- small-sized international collaboration

#### **Current** Limitations

- strong limitation on neutron production
- limited beam species (p,  $\alpha$ , <sup>3</sup>He)
- limited energy range



## future projects

✓ CUNA LSC
✓ JUNA CJPL
✓ CASPAR SURF
✓ LUNA MV LNGS

LSC Laboratorio Subterráneo de Canfranc CJPL China Jinping Underground Laboratory SURF Sanford Underground Research Facility LNGS Gran Sasso National Laboratory

#### LUNA MV project

LUNA MV will be installed in the North part of Hall B of LNGS



Funded by the Italian Research Ministry as a "premium project" with 5.3 Meuro. HVEE has been selected through a public tender as provider of the new accelerator (0.3<TV<3.5 MV) able to deliver intense H, He and C beams

Expected installation at LNGS in 2018. First experiment in 2019

#### LUNA MV-scientific program (2019 ....)

- <sup>13</sup>C(α,n)<sup>16</sup>O: enriched <sup>13</sup>C solid or gas target. Neutron detector
   Data taking at LUNA 400 kV in 2017-2018.
- ${}^{22}$ Ne( $\alpha$ ,n) ${}^{25}$ Mg: enriched  ${}^{22}$ Ne gas target. Neutron detector.
- <sup>12</sup>C(α,γ)<sup>16</sup>O: <sup>12</sup>C solid target depleted in <sup>13</sup>C and alpha beam or a jet gas target and <sup>12</sup>C beam.
- <sup>12</sup>C+<sup>12</sup>C: solid state target. Gamma and particle detectors
- Commissioning measurement: <sup>14</sup>N(p,γ)<sup>15</sup>O. High scientific interest for revised data covering a wide energy range (400 keV- 3.5 MeV).

LUNA MV is open to new collaborations on the whole program or even on single experiments (please refer for any information SP: prati@ge.infn.it)

On December 1<sup>st</sup>, 2016 a workshop will be organized at LNGS both to celebrate the first 25year period of LUNA activities ("*Silver Moon*") and to present the perspectives for the next decades :<u>http://silvermoon.lngs.infn.it/</u>

### Summary and Outlook

Underground measurements have revolutionized experimental nuclear astrophysics and our understanding of stellar energy generation, nucleosynthesis, and neutrino physics

New underground facilities will open up exiting new opportunities for further major breakthrough in the field

#### The LUNA COLLABORATION (as of May 2016)

- A. Boeltzig\*, G.F. Ciani\*, L. Di Paolo, A. Formicola, I. Kochanek, M. Junker, | INFN LNGS / \*GSSI, Italy
- D. Bemmerer, M. Takacs, T. Szucs | HZDR Dresden, Germany
- C. Broggini, A. Caciolli, R. Depalo, R. Menegazzo, D. Piatti | Università di Padova and INFN Padova, Italy
- C. Gustavino | INFN Roma1, Italy
- Z. Elekes, Zs. Fülöp, Gy. Gyurky | MTA-ATOMKI Debrecen, Hungary
- O. Straniero | INAF Osservatorio Astronomico di Collurania, Teramo, Italy
- F. Cavanna, P. Corvisiero, F. Ferraro, P. Prati, S. Zavatarelli | Università di Genova and INFN Genova, Italy
- A. Guglielmetti, D. Trezzi | Università di Milano and INFN Milano, Italy
- A. Best, A. Di Leva, G. Imbriani, | Università di Napoli and INFN Napoli, Italy
- G. Gervino | Università di Torino and INFN Torino, Italy
- M. Aliotta, C. Bruno, T. Davinson | University of Edinburgh, United Kingdom
- G. D'Erasmo, E.M. Fiore, V. Mossa, F. Pantaleo, V. Paticchio, R. Perrino, L. Schiavulli, A. Valentini | Università di Bari and INFN Bari, Italy

