Riccardo Ridolfi

Introduction

History

Physical principles

FOOT

Treated diseases

Conclusions

## Hadrontherapy against cancer: an overview

## Riccardo Ridolfi riccardo.ridolfi2@studio.unibo.it

Alma Mater Studiorum - University of Bologna

5 October 2016 Gran Sasso Science Institute

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

# Outline

#### Hadrontherapy against cancer

Riccardo Ridolfi

Introduction

History

Physical principles

FOOT

Treated diseases

Conclusions

## 1 Introduction

2 History

3 Physical principles

4 FOOT

5 Treated diseases

6 Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の��

# What is ion beam therapy?

#### Hadrontherapy against cancer

Riccardo Ridolfi

#### Introduction

History

Physical principles

FOOT

Treated diseases

Conclusions

## In Ion Beam Therapy (IBT, or *hadrontherapy*) ion beams for treatment of deep seated tumours are used

Profile characterized by a low dose in the entrance channel and by a sharp peak near the end of the path (*Bragg peak*)
Very good control in all three spatial dimensions

イロト 不得下 イヨト イヨト ヨー ろくで

# What is ion beam therapy?

#### Hadrontherapy against cancer

Riccardo Ridolfi

#### Introduction

- History
- Physical principles
- FOOT
- Treated diseases
- Conclusions

- In Ion Beam Therapy (IBT, or *hadrontherapy*) ion beams for treatment of deep seated tumours are used
- Profile characterized by a low dose in the entrance channel and by a sharp peak near the end of the path (*Bragg peak*)

イロト 不得下 イヨト イヨト ヨー ろくで

Very good control in all three spatial dimensions

# What is ion beam therapy?

#### Hadrontherapy against cancer

Riccardo Ridolfi

#### Introduction

- History
- Physical principles
- FOOT
- Treated diseases
- Conclusions

- In Ion Beam Therapy (IBT, or *hadrontherapy*) ion beams for treatment of deep seated tumours are used
- Profile characterized by a low dose in the entrance channel and by a sharp peak near the end of the path (*Bragg peak*)

イロト 不得下 イヨト イヨト ヨー ろくで

Very good control in all three spatial dimensions

# Short history of IBT

#### Hadrontherapy against cancer

Riccardo Ridolfi

#### Introduction

#### History

Physical principles

FOOT

Treated diseases

Conclusions

- 1946: Robert Wilson publishes "Radiological Use of Fast Protons". The *Bragg peak* of heavy charged particles can be used against cancers
- First treatments: 1954 Berkeley, 1957 Sweden, 1983 Japan

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Facilities in Italy: 2002 CATANA, 2011 CNAO, 2014
 Proton Therapy Center

# A tough journey

#### Hadrontherapy against cancer

Riccardo Ridolfi

#### Introduction

#### History

Physical principles

FOOT

Treated diseases

Conclusions

Electrons Mass  $0.5 \text{ MeV}/c^2$ Requested energy 10 MeV Protons Mass 1 GeV/c<sup>2</sup> Requested energy > 200 MeV

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

IBT costs are 2 - 3 times higher respect to conventional RT!

# A tough journey

#### Hadrontherapy against cancer

Riccardo Ridolfi

#### Introduction

#### History

Physical principles

FOOT

Treated diseases

Conclusions

Electrons Mass  $0.5 \text{ MeV}/c^2$ Requested energy 10 MeV Protons Mass 1 GeV/c<sup>2</sup> Requested energy > 200 MeV

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

IBT costs are 2 - 3 times higher respect to conventional RT!

## Photons

#### Hadrontherapy against cancer

Riccardo Ridolfi

Introduction

History

# Physical principles

FOOT

Treated diseases

Conclusions

The attenuation of a photon beam in a medium is a decreasing exponential in depth and can be written as:

 $I(x) = I_0 e^{-\mu x}$ 



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = の��

# Heavy charged particles

#### Hadrontherapy against cancer

Riccardo Ridolfi

Introduction

History

Physical principles

FOOT

Treated diseases

Conclusions



- inelastic collisions with electrons of the material → energy loss
- elastic scattering with nuclei → deflection from incident direction

## Bethe-Bloch formula

$$-\frac{dE}{dx} = 2\pi N_a r_e^2 m_e c^2 \rho \frac{Z}{A} \frac{Z^2}{\beta^2} \left[ ln \left( \frac{2m_e \gamma^2 v^2 W_{\text{max}}}{l^2} \right) - 2\beta^2 - \delta - 2\frac{C}{Z} \right]$$

イロン イボン イヨン イヨン 三日

# Heavy charged particles

#### Hadrontherapy against cancer

- Riccardo Ridolfi
- Introduction
- History

# Physical principles

- FOOT
- Treated diseases
- Conclusions



- $\scriptstyle \bullet$  inelastic collisions with electrons of the material  $\rightarrow$  energy loss
- $\blacksquare$  elastic scattering with nuclei  $\rightarrow\,$  deflection from incident direction

## Bethe-Bloch formula

$$-\frac{dE}{dx} = 2\pi N_a r_e^2 m_e c^2 \rho \frac{Z}{A} \frac{z^2}{\beta^2} \left[ ln \left( \frac{2m_e \gamma^2 v^2 W_{\text{max}}}{l^2} \right) - 2\beta^2 - \delta - 2\frac{C}{Z} \right]$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

# Heavy charged particles

#### Hadrontherapy against cancer

- Riccardo Ridolfi
- Introduction
- History

# Physical principles

- FOOT
- Treated diseases
- Conclusions



- $\blacksquare$  inelastic collisions with electrons of the material  $\rightarrow$  energy loss
- $\blacksquare$  elastic scattering with nuclei  $\rightarrow\,$  deflection from incident direction

## Bethe-Bloch formula

$$-\frac{dE}{dx} = 2\pi N_a r_e^2 m_e c^2 \rho \frac{Z}{A} \frac{z^2}{\beta^2} \left[ ln \left( \frac{2m_e \gamma^2 v^2 W_{\text{max}}}{l^2} \right) - 2\beta^2 - \delta - 2\frac{C}{Z} \right]$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

# Stopping power

#### Hadrontherapy against cancer

Riccardo Ridolfi

Introduction

History

# Physical principles

FOOT

Treated diseases

Conclusions





# Multiple Coulomb Scattering



Riccardo Ridolfi

Introduction

History

# Physical principles

FOOT

Treated diseases

Conclusions



э

### MCS formula

 $\sigma_{ heta} = rac{14.1\,{
m MeV}}{eta_{
m pc}} \cdot Z_{
m p} \sqrt{rac{d}{L_{
m rad}}} \left[1+1/9\ln\left(rac{d}{L_{
m rad}}
ight)
ight]$ 

# Multiple Coulomb Scattering



Riccardo Ridolfi

Introduction

History

# Physical principles

FOOT

Treated diseases

Conclusions



$$\frac{\text{MCS formula}}{\sigma_{\theta} = \frac{14.1 \,\text{MeV}}{\beta pc} \cdot Z_{p} \sqrt{\frac{d}{L_{rad}}} \left[ 1 + 1/9 \ln \left( \frac{d}{L_{rad}} \right) \right]}$$

æ

# Nuclear fragmentation with heavy ions



イロト イポト イヨト イヨト ヨー わくや

Treated diseases

Conclusions

# Nuclear fragmentation with heavy ions



# RT vs IBT

#### Hadrontherapy against cancer

Riccardo Ridolfi

Introduction

History

Physical principles

FOOT

Treated diseases

Conclusions





イロト イポト イモト イモト 二日

# Nuclear fragmentation with protons



▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

# What can we do?

Hadrontherapy against cancer

> Riccardo Ridolfi

Introduction

History

Physical principles

#### FOOT

Treated diseases

Conclusions

We need a target fragmentation experiment...

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = の��

# What can we do?

#### Hadrontherapy against cancer

Riccardo Ridolfi

Introduction

History

Physical principles

### FOOT

Treated diseases

Conclusions

We need a target fragmentation experiment...





Hadrontherapy against cancer

> Riccardo Ridolfi

Introduction

History

Physical principles

### FOOT

Treated diseases

Conclusions

What about shooting a proton with β = 0.6 on a patient (98% H, C and O nuclei) at rest? NO! too much difficult to detect

So, let's shoot a β = 0.6 patient on a proton at rest and measure how it fragments! YES! inverse kinematics

How to measure:

senergy;

- use twin targets made of C and polyethylene (C<sub>2</sub>H<sub>8</sub>)<sub>n</sub> and obtain the H target result by subtraction;
- apply the reverse boost with the well known β of the beam (it is very important to measure fragment directions with extreme precision).

イロト 不得下 イヨト イヨト

э

#### Hadrontherapy against cancer

- Riccardo Ridolfi
- Introduction
- History
- Physical principles

### FOOT

- Treated diseases
- Conclusions

- What about shooting a proton with β = 0.6 on a patient (98% H, C and O nuclei) at rest? NO! too much difficult to detect
- So, let's shoot a β = 0.6 patient on a proton at rest and measure how it fragments! YES! inverse kinematics

### How to measure:

 use patient ion beams (mainly <sup>16</sup>O, <sup>12</sup>C) with the right energy;

- w use twin targets made of C and polyethylene (C<sub>2</sub>H<sub>8</sub>)<sub>n</sub> and obtain the H target result by subtraction;
- a apply the reverse boost with the well known  $\beta$  of the beam (it is very important to measure fragment directions with extreme precision).

・ロト ・ 一下・ ・ ヨト ・ 日 ・

3

#### Hadrontherapy against cancer

- Riccardo Ridolfi
- Introduction
- History
- Physical principles

### FOOT

- Treated diseases
- Conclusions

- What about shooting a proton with β = 0.6 on a patient (98% H, C and O nuclei) at rest? NO! too much difficult to detect
- So, let's shoot a β = 0.6 patient on a proton at rest and measure how it fragments! YES! inverse kinematics

### How to measure:

- use patient ion beams (mainly <sup>16</sup>O, <sup>12</sup>C) with the right energy;
- use twin targets made of C and polyethylene (C<sub>2</sub>H<sub>4</sub>), and obtain the H target result by subtraction;
- apply the reverse boost with the well known *B* of the beam (it is very important to measure fragment directions with extreme precision).

・ロト ・ 一下 ・ ト・ ・ 日 ・

3

#### Hadrontherapy against cancer

- Riccardo Ridolfi
- Introduction
- History
- Physical principles

### FOOT

- Treated diseases
- Conclusions

- What about shooting a proton with β = 0.6 on a patient (98% H, C and O nuclei) at rest? NO! too much difficult to detect
- So, let's shoot a β = 0.6 patient on a proton at rest and measure how it fragments! YES! inverse kinematics
- How to measure:
  - use patient ion beams (mainly <sup>16</sup>O, <sup>12</sup>C) with the right energy;
  - use twin targets made of C and polyethylene (C<sub>2</sub>H<sub>4</sub>)<sub>n</sub> and obtain the H target result by subtraction;
  - apply the reverse boost with the well known β of the beam (it is very important to measure fragment directions with extreme precision).

イロト 不良 マイボン イボン しょうくう

#### Hadrontherapy against cancer

- Riccardo Ridolfi
- Introduction
- History
- Physical principles

### FOOT

- Treated diseases
- Conclusions

- What about shooting a proton with β = 0.6 on a patient (98% H, C and O nuclei) at rest? NO! too much difficult to detect
- So, let's shoot a β = 0.6 patient on a proton at rest and measure how it fragments! YES! inverse kinematics
- How to measure:
  - use patient ion beams (mainly <sup>16</sup>O, <sup>12</sup>C) with the right energy;
  - use twin targets made of C and polyethylene (C<sub>2</sub>H<sub>4</sub>)<sub>n</sub> and obtain the H target result by subtraction;
  - apply the reverse boost with the well known β of the beam (it is very important to measure fragment directions with extreme precision).

イロト 不良 マイボン イボン しょうくう

#### Hadrontherapy against cancer

- Riccardo Ridolfi
- Introduction
- History
- Physical principles

### FOOT

- Treated diseases
- Conclusions

- What about shooting a proton with β = 0.6 on a patient (98% H, C and O nuclei) at rest? NO! too much difficult to detect
- So, let's shoot a β = 0.6 patient on a proton at rest and measure how it fragments! YES! inverse kinematics
- How to measure:
  - use patient ion beams (mainly <sup>16</sup>O, <sup>12</sup>C) with the right energy;
  - use twin targets made of C and polyethylene (C<sub>2</sub>H<sub>4</sub>)<sub>n</sub> and obtain the H target result by subtraction;
  - apply the reverse boost with the well known β of the beam (it is very important to measure fragment directions with extreme precision).

# Space radiation protection

#### Hadrontherapy against cancer

Riccardo Ridolfi

Introduction

History

Physical principles

### FOOT

Treated diseases

Conclusions



ヘロト 人間ト 人間ト 人間ト

э

## Space radiation protection

Hadrontherapy against cancer

> Riccardo Ridolfi

Introduction

Physical principles

FOOT

Treated diseases

Conclusions



 $C_2H_4$  is foreseen to be used in spacecraft shielding, having knowledge of its fragmentation cross section very important to calculate dose absorbed by the astronauts.

# Space radiation protection

Hadrontherapy against cancer

> Riccardo Ridolfi

Introduction

Physical principles

FOOT

Treated diseases

Conclusions



 $C_2H_4$  is foreseen to be used in spacecraft shielding, having knowledge of its fragmentation cross section very important to calculate dose absorbed by the astronauts.

# To-do-list

#### Hadrontherapy against cancer

- Riccardo Ridolfi
- Introduction
- History
- Physical principles
- FOOT
- Treated diseases
- Conclusions

- Target fragmentation of p on O,C @100 200 MeV/u;
  - Projectile fragmentation of O on C @200 400 MeV/u;
  - Projectile fragmentation of C on C @200 350 MeV/u;
  - Evaluation of the β<sup>+</sup> emitters production from C, O on C
     @200 400 MeV/u;
  - Fragmentation measurements of several beams on (C<sub>2</sub>H<sub>4</sub>)<sub>n</sub> of interest for radioprotection in space.

ション ふゆ アメリア メリア しょうくの

## The detector



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = の��

## The detector



## Results

#### Hadrontherapy against cancer

- Riccardo Ridolfi
- Introduction
- History
- Physical principles
- FOOT
- Treated diseases
- Conclusions

- Uveal melanoma→ 5-yr survival= 80.8%, 5-yr TCP= 96.4%
- Lung cancer $\rightarrow$  5-yr survival= 84.7% 96.3% (RT only 30%), 5-yr TCP= 91.5%
- Liver cancer (HCC) $\rightarrow$  5-yr survival= 71%, 3-yr TCP= 73%

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

■ Chordoma and chondrosarcoma→ 5-yr survival= 80% - 95% (RT only 40%)

# Candidate pathologies



Riccardo Ridolfi

Introduction

History

Physical principles

FOOT

Treated diseases

Conclusions







## Conclusions

#### Hadrontherapy against cancer

Riccardo Ridolfi

- Introduction
- History
- Physical principles
- FOOT
- Treated diseases
- Conclusions

- OAR sparing
- drastic reduction of side effects (pediatric tumours)
- space and cost
- nearly sixty protontherapy centres, ten with carbon ions

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- nowadays patients number grows of 8% every year
- a lot of work needs to be done!

Riccardo Ridolfi

Introduction

History

Physical principles

FOOT

Treated diseases

Conclusions

# Thank for your attention!



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …の�?

Riccardo Ridolfi

Introduction

History

Physical principles

FOOT

Treated diseases

Conclusions

# Thank for your attention!



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …の�?

Riccardo Ridolfi

Introduction

History

Physical principle

FOOT

Treated diseases

Conclusions



distance from center (nm)



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで



Riccardo Ridolfi

Introduction

History

Physical principles

FOOT

Treated diseases

Conclusions



◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 つくぐ

> Riccardo Ridolfi

Introduction

History

Physical principles

FOOT

Treated diseases

Conclusions

$$K = \frac{1}{2}mv^2 = \frac{q^2B^2R^2}{2m}.$$

$$m = rac{m_0}{\sqrt{1-\beta^2}} = \gamma m_0$$
  $\nu = rac{\nu_0}{\gamma} = \nu_0 \sqrt{1-\beta^2}$ 



Riccardo Ridolfi

Introduction

History

Physical principles

FOOT

Treated diseases

Conclusions



$$Q(E) = e \cdot \left(\frac{I_{\mathsf{fascio}} \cdot \Delta t \cdot \rho \cdot \Delta x}{W} \cdot \frac{dE}{dx}\right)$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …の�?

## Gantries

#### Hadrontherapy against cancer

Riccardo Ridolfi

Introduction

History

Physical principles

FOOT

Treated diseases

Conclusions

- allow beam to enter from several angles
- magnetic rigidity issue of protons and mostly of carbon ions



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = の��

> Riccardo Ridolfi

Introduction

History

Physical principles

FOOT

Treated diseases

Conclusions

$$\frac{mv^2}{\rho} = qvB \qquad B\rho = \frac{Am_{av}v}{ne}$$
$$B[T]\rho[m] = \frac{1}{0.299792458} \cdot \left(\frac{A}{n}\right) \cdot p_{av} [\text{GeV}/c]$$

# Radiobiology

#### Hadrontherapy against cancer

Riccardo Ridolfi

Introduction

History

Physical principles

FOOT

Treated diseases

Conclusions

## What is radiobiology?

In oncological RT field radiobiology studies the interactions between ionizing radiations and living organisms and their effects.

# Four fundamental quantities



Riccardo Ridolfi

Introduction

History

Physical principles

FOOT

Treated diseases

Conclusions

Absorbed dose

- LET, Linear Energy Transfer
- RBE, Relative Biological Effectiveness

イロト 不良 マイボン イボン しょうくう

OER, Oxygen Enhancement Ratio

# Protons vs <sup>12</sup>C



Riccardo Ridolfi

Introduction

History

Physical principles

FOOT

Treated diseases

Conclusions





▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

OER value for carbon ions ( $\simeq 1$ ) allows treatment of hypoxic tumours (the only solution so far)!

# Real-time PET, Positron Emission Tomography

#### Hadrontherapy against cancer

Riccardo Ridolfi

Introduction

History

Physical principles

FOOT

Treated diseases

Conclusions

## PET is a nuclear medicine technique used in order to obtain functional images of patients' body

• a short half-life isotope is bound in a molecule requested by tumour in its life cycle: when this isotope begins to decay through  $\beta^+$  positron annihilates with an electron of the tissue, thus creating the well-known photon pair

イロト 不得下 イヨト イヨト ヨー ろくで

in IBT autoactivation is used for monitoring the dose delivery

# Real-time PET, Positron Emission Tomography

#### Hadrontherapy against cancer

- Riccardo Ridolfi
- Introduction
- History
- Physical principles
- FOOT
- Treated diseases
- Conclusions

- PET is a nuclear medicine technique used in order to obtain functional images of patients' body
- a short half-life isotope is bound in a molecule requested by tumour in its life cycle: when this isotope begins to decay through β<sup>+</sup> positron annihilates with an electron of the tissue, thus creating the well-known photon pair

ション ふゆ アメリア メリア しょうくの

 in IBT autoactivation is used for monitoring the dose delivery

# Real-time PET, Positron Emission Tomography

#### Hadrontherapy against cancer

- Riccardo Ridolfi
- Introduction
- History
- Physical principles
- FOOT
- Treated diseases
- Conclusions

- PET is a nuclear medicine technique used in order to obtain functional images of patients' body
- a short half-life isotope is bound in a molecule requested by tumour in its life cycle: when this isotope begins to decay through β<sup>+</sup> positron annihilates with an electron of the tissue, thus creating the well-known photon pair

ション ふゆ アメリア メリア しょうくの

 in IBT autoactivation is used for monitoring the dose delivery

# Real-time PET (Positron Emission Tomography



・ロト ・個ト ・ヨト ・ヨト ・ヨー のへぐ

# Real-time PET



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = の��

Conclusions

| Hadrontherap |
|--------------|
| against      |
| cancer       |
| Cancer       |

Riccardo Ridolfi

Introduction

History

Physical principles

FOOT

Treated diseases

Conclusions

| $\beta^+$ emettitor | $T_{1/2}$     |
|---------------------|---------------|
| <sup>11</sup> C     | 20.4 min      |
| <sup>10</sup> C     | 19.2 <i>s</i> |
| <sup>15</sup> O     | 122 <i>s</i>  |
| <sup>13</sup> N     | 9.96 min      |





◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - の�?

## Passive scattering vs active scanning

#### Hadrontherapy against cancer

Riccardo Ridolfi

Introduction

History

Physical principles

FOOT

Treated diseases

Conclusions





・ロト ・個ト ・モト ・モト 三日