

Radio-Guided Surgery with β- radiation: tests on ex-vivo specimens

Elena Solfaroli Camillocci

Dip. di Fisica, Università "La Sapienza" & INFN Roma elena.solfaroli@roma1.infn.it on behalf of the **ARPG group** http://arpg-serv.ing2.uniroma1.it/arpg-site/

Applied Radiation Physics Group

ISTITUTO ITALIANO DI TECNOLOGIA

Applied Radiation Physics Group

ISTITUTO ITALIANO DI TECNOLOGIA

Collaborations with medicinal chemists, biologists, radio-pharmacist, nuclear medicine physicians, oncologists, surgeons:

SERVIZIO SANITARIO REGIONALE EMI_IA-ROMAGNA Azienda Ospedaliera di Reggio Emilia

Arcispedale S. Naria Nuova

Istituto in tecnologie avanzate e modeli assistenziali in oncologia Istituto di Ricovera e Cura a Caiattere Scientfico

Outline

- \circ The radio-guided surgery (RGS) based on β radiation
 - Clinical applications of interest;
 - The β detecting technology;
 - Validation with ex-vivo tests on specimens
 - Meningioma brain tumours.
 - Gastro-entero-pancreatic neuroendocrine tumors (GEP-NET).
 - Method to estimate the minimum injectable activity;
- Conclusion and next steps

Radio-Guided Surgery

GOAL: as much complete as possible tumour resection

RADIOPHARMACEUTICAL

INTRAOPERATIVE DETECTING PROBE

RGS is crucial for recurrence-free and overall survival.

RGS based on β- radiation Long Range Radio-tracer

RGS based onβ- radiationLong Range Radio-tracerShort Range Radio-tracer

Elena Solfaroli Camillocci - MEDAMI 2017

Clinical Applications

β - radionuclides can extend the range of RGS application

PEDIATRIC TUMORS

ABDOMINAL TUMORS

Kidney

Elena Solfaroli Camillocci - MEDAMI 2017

BRAIN TUMORS

RGS would help:

 after the tumor mass removal, brain shape changes with respect to the images acquired before.

The β - Detecting System

1. Scintillator: Para-terphenyl

- High light yield 2*LY(stilbene)
- Scarce sensitivity to γ (q=1.24g/cm³)
- Light attenuation λ few mm
- 2. Silicon PhotoMultiplier (SiPM)
 SensL C-10035 dark current ~15nA
- Portable electronics read-out, customised to match the surgeon needs

Compatible with a standard sterile covering (e.g. for endoscopic camera)

The β - Detecting System

1. Scintillator: Para-terphenyl

- High light yield 2*LY(stilbene)
- Scarce sensitivity to γ (q=1.24g/cm³)
- Light attenuation λ few mm
- 2. Silicon PhotoMultiplier (SiPM)
 SensL C-10035 dark current ~15nA
- Portable electronics read-out, customised to match the surgeon needs

Able to detect small lesions ≤0.1ml within 1s with activity of ~1kBq/ml.

Compatible with a standard sterile covering (e.g. for endoscopic camera)

- The adopted technology is flexible and can be easily integrated into surgical devices/applications
 - minimally invasive robotic surgery
- Working on two new applications:
 - integration with a frazier surgical suction instrument;
 - endo/laparoscopic tools.
- Also under study CMOS technology as alternative
 - to lower the energy limit
 - better gamma/beta discrimination would open the technique to the most common PET radionuclides (long range)

- The adopted technology is flexible and can be easily integrated into surgical devices/applications
 - minimally invasive robotic surgery
- Working on two new applications:
 - integration with a frazier surgical suction instrument;
 - endo/laparoscopic tools.
- Also under study CMOS technology as alternative
 - to lower the energy limit
 - better gamma/beta discrimination would open the technique to the most common PET radionuclides (long range)

- The adopted technology is flexible and can be easily integrated into surgical devices/applications
 - minimally invasive robotic surgery
- Working on two new applications:
 - integration with a frazier surgical suction instrument;
 - endo/laparoscopic tools.
- Also under study CMOS technology as alternative
 - to lower the energy limit
 - better gamma/beta discrimination would open the technique to the most common PET radionuclides (long range)

Ex-vivo Tests on Meningioma

Clinical trial EUDRACT 2013-004033-32

Patient Enrolment

Ø MENINGIOMA

- high uptake to a β radio-tracer ⁹⁰Y-DOTATOC (synthetic somatostatin analogue)
- From ⁶⁸Ga-DOTATOC PET images:
 - standardised uptake value SUV>2g/ml
 - o tumor/non-tumor TNR>10
- According to a previous feasibility study:
 - 0.1ml tumor residue detectable in 1s with administration of ~1MBq/kg

Patient	V_T [ml]	\overline{SUV} [g/ml]	SD(SUV) [g/ml]	TNR	A_{adm} [MBq]	W [kg]	A_{est} [kBq/ml]
1	18.3	4.3	1.1	26	167	104	5.4
2	11.9	3.1	0.9	62	111	77	3.4
3	21.5	2.8	1.2	92	93	65	3.0

156MBq ⁶⁸Ga-DOTATOC PET/CT

Elena Solfaroli Camillocci - MEDAMI 2017

Expected Activity for Lesioned Specimens

At the time of surgery: $A_{est}[kBq/ml] = A_{inj}[MBq/kg] * SUV[g/ml] * 2^(-\Delta t/\tau_{1/2})$ Injected activity SUV of the primary lesion estimated from ⁶⁸Ga-PET

Assuming that the bio-distribution depends on the drug delivery mechanism and is not affected by the labelling radionuclide.

Clinical Protocol

- 1. ⁶⁸Ga-DOTATOC PET/CT scan (2 weeks prior).
- 2. Voluntary patients gave written informed consent.
- 3. ⁹⁰Y-DOTATOC injection.
- 4. Wait 24 hours for bio-distribution and wash-out from healthy organs → optimal TNR.
- 5. Tumor bulk removal by neurosurgeon.
- 6. Quantification of β probe response on small (~0.1ml) samples.
- 7. Specimen classification by anatomo-pathologists.
- Patients received the kidney protection (aminoacid solution) as in Peptide Receptor Radionuclide therapy (PRRT)

Ex-vivo Meningioma specimens

Histological exams confirmed the tumoral nature of the specimens.

SUV and TNR from ⁶⁸Ga-PET :

- R_{min}: minimum counting rate to detect
 a 0.1ml sample in 1s with probability of
 false positive <1%
 - \circ false negative <5%

 A_{min}: minimum activity of a tumor residual of 0.1ml

SUV and TNR from ⁶⁸Ga-PET :

- R_{min}: minimum counting rate to detect
 a 0.1ml sample in 1s with probability of
 false positive <1%
 - false negative <5%

 A_{min}: minimum activity of a tumor residual of 0.1ml

SUV and TNR from ⁶⁸Ga-PET :

- R_{min}: minimum counting rate to detect
 a 0.1ml sample in 1s with probability of
 false positive <1%
 - false negative <5%

 A_{min}: minimum activity of a tumor residual of 0.1ml

SUV and TNR from ⁶⁸Ga-PET :

- R_{min}: minimum counting rate to detect
 a 0.1ml sample in 1s with probability of
 false positive <1%
 - false negative <5%

 A_{min}: minimum activity of a tumor residual of 0.1ml

 $A_{inj}[MBq/kg] = (A_{min}/0.1ml)/SUV$

SUV and TNR from ⁶⁸Ga-PET :

- R_{min}: minimum counting rate to detect
 a 0.1ml sample in 1s with probability of
 false positive <1%
 - false negative <5%
- Amin: minimum activity of a tumor residual of 0.1ml

 $A_{inj}[MBq/kg] = (A_{min}/0.1ml)/SUV$

◆ For Patient-1: SUV=4.3g/ml, TNR=26 → R_{min}=8cps and A_{min}=0.34kBq → 0.1ml detectable in 1s by administering 0.8MBq/kg.

⁹⁰Y-DOTATOC injected Activity 1.4MBq/kg

Personnel

 total effective dose to staff and dose to surgeon's hands <40 µSv (detector sensitivity)

Patient

- comparable with a PET/CT scan with ¹⁸F-FDG.
- Surgical wastes and patient urine packs in 1 cm thick methacrylate boxes

rial in Prostess **Ex-vivo** Tests $\mathbf{0}\mathbf{n}$ GastroEnteroPancreatic NET

Clinical trial EUDRACT 2015-005202-10

Small Bowel NET

ILEAL LESION Primary lesion 1ml SUV=7.6g/ml TNR=22

MESENTERIC Lymph-nodes 4ml SUV=5.5g/ml TNR=15

107MBq ⁶⁸Ga-DOTATOC PET/CT weight 82kg

Patient enrolment and clinical protocol similar to those for meningioma tests.

Ileal Lesion

Ileal Lesion

Tumoral bulk embedded in the healthy tissue

Mesenteric Lymph-nodes

Conclusions

- \oslash RGS based on β radiation is under development:
 - \circ Ex-vivo tests confirmed the β RGS potentialities.
 - Short range radio-tracer (normally used for therapy) can be adopted for RGS with low activity ~1MBq/kg.
 - A method to estimate the minimum activity for detection of 0.1ml tumour in 1s has been proposed.
 - Solution Negligible exposure of personnel was demonstrated.
- Ø Next steps:
 - New β- RGS applications (including endo/laparoscopic application) are under investigation;
 - R&D of β- RGS with different radio-tracers and radionuclides other from 90 Y.

Promising Radionuclides

Isotope	T _{1/2} (h)	E _g (keV)	$I_g(\%)$	EP _b (keV)	$I_b(\%)$	$T_{\min}^{*}(s)$	Dose@1m(µSv/h)
¹⁸ F	1.8	511	194	633.5	97	>25	38
⁶⁸ Ga	1.1	511	178	1899	88	0.7	38
³¹ Si	2.6			1491	100	0.4	27*10-3
³² P	343			1710	100	0.3	27*10-3
⁶⁷ Cu	62	93/184	16/48	377/468/56	22/20/99	>25	4.8
⁸³ Br	2.4			935	99	0.9	0.29
⁹⁰ Y	64			2280	100	0.5	27*10-3
⁹⁷ Zr	17	743	93	759	88	0.8	6.1
¹³¹ I	192	365/637	82/7	334/696	7/90	>25	16
¹³³ I	20.9	530	87	1227	83.4	2.8	
¹⁵³ Sm	46	103	29	635/704/80	31/49/18	3.1	5.0
¹⁷⁷ Lu	160	112/208	6/10	500	79	>25	1.6
¹⁸⁸ Re	17	155	15	1962/2118	25/72	0.4	2.3

* T_{min} = Time needed to detect a 0.1ml activated residual with FN<5% FP<1% if 3MBq/kg are administered and SUV=4, TNR=8

R&D of Tracers with 90Y

- Synthesis of new radio-tracers labeled by 90Y based on
 - Humanized monoclonal antibodies for EGFR receptors
 - NIMOTUZUMAB for head and neck carcinoma
 - **PET/SPECT tracer** just replacing the radionuclide
 - MIBG used for scan of neuroblastoma in childhood
- Development of tumor targeting nanoscale carriers composed of polymers, antibody and 90Y
 could be injected locally

References

- A novel radioguided surgery technique exploiting β- decays
 E. Solfaroli Camillocci et al, Sci Rep 4, 4401 (2014) doi:10.1038/srep04401
- Properties of para-terphenyl as detector for alpha, beta and gamma radiation
 M. Angelone et al, IEEE Transactions on Nuclear Science 61, 3 pp. 1483-1487, (2014) doi:10.1109/TNS.2014.2322106
- Polycrystalline para-terphenyl scintillator adopted in a β- detecting probe for radio-guided surgery.
 E. Solfaroli Camillocci et al, J Phys Conf Ser 620 012009 (2015) doi:10.1088/1742-6596/620/1/012009
- 4. Toward Radioguided Surgery with β- Decays: Uptake of a Somatostatin Analogue, DOTATOC, in Meningioma and High-Grade Glioma.

F. Collamati et al, J Nucl Med 56, 1-6 (2015) PRESS RELEASE January 2015 doi:10.2967/jnumed.114.145995

 Time evolution of DOTATOC uptake in neuroendocrine tumors in view of a posible application of radioguided surgery with β- decay

F. Collamati et al, J Nucl Med 56, 10, 1501-6 (2015) doi:10.2967/jnumed.115.160481

- 6. An Intraoperative β- Detecting Probe For Radio-Guided Surgery in Tumour Resection A. Russomando et al, IEEE TNS 63, 5 (2016) doi:10.1109/TNS.2016.2600266
- 7. Intraoperative probe detecting β- decays in brain tumour radio-guided surgery
 E. Solfaroli Camillocci (corresponding author) et al, NIMA 845, 689-692 (2017) doi:10.1016/j.nima.2016.04.107
- First Ex-Vivo Validation of a Radioguided Surgery Technique with β- Radiation
 E. Solfaroli Camillocci et al, Phys. Med. 32(9):1139-44 (2016) doi:10.1016/j.ejmp.2016.08.018
- Feasibility of the β- Radio-Guided Surgery with a Variety of Radio-Nuclides of Interest to Nuclear Medicine C. Mancini-Terracciano et al, submitted to Physica Medica (2017)
- 10. Y3+ embebbed in polymeric nanoparticles: morphology, dimension and stability of composite colloidal system. Venditti et al, Colloid and Surface A (2017) doi:<u>10.1016/j.colsurfa.2017.05.082</u>

11. The β -radio-guided surgery: method to estimate the minimum injectable activity from ex-vivo test.

A. Russomando et al, submitted to JNM (2017)

Elena Solfaroli Camillocci - MEDAMI 2017

Back-up Slides

Monte Carlo Simulation

DICOM imported in FLUKA

Detector simulation

Simulation using FLUKA code allows us to achieve:

Elena Solfaroli Camillocci - MEDAMI 2017

Monte Carlo Simulation

DICOM imported in FLUKA

Detector simulation

Simulation using FLUKA code allows us to achieve:
 R&D of the Probe: technology, geometry and detector shielding.

Monte Carlo Simulation

DICOM imported in FLUKA

Detector simulation

Simulation using FLUKA code allows us to achieve:

- Performances of the β- RGS in terms of minimum detectable activity, probe counting rate, dose delivery
 - Feasibility studies for meningioma and glioma, neuroendocrine tumors.
 - RGS potentialities with other radionuclides different from 90Y.

β- RGS on Meningioma: Feasibility Study

 ⁶⁸Ga-DOTATOC PET images of 11 patients (20 lesions)

- SUV > 2g/ml (70%)
- 0.1ml detectable in 1s with administration of ~1MBq/kg
 ⁹⁰Y-DOTATOC with
 - false positive <1%
 - \circ false negative <5%

$$FP = 1 - \sum_{N=0}^{th-1} \mathcal{P}_{\mu_b}(N)$$

$$FN = \sum_{N=0}^{th-1} \mathcal{P}_{\mu_s}(N).$$

MC simulation: the background

- We imported a PET/CT (DICOM file) in FLUKA
- Hounsfield Units (HU) are converted into density and elemental composition

- spatial distribution of the primaries is sampled using the FDG-PET, thus assuming the same uptake as the FDG
- 50 replicas of the probe were simulated

