VIS and NIR high resolution spectroscopy for field and cluster RR Lyrae

Davide Magurno

University of Roma Tor Vergata – PhD Cycle XXXI

On behalf of the OSIRS collaboration (University of Tokyo) and prof. Chris Sneden (University of Texas) Supervisors: Prof. R. Buonanno Prof. G. Bono

The Fourth Azarquiel School of Astronomy: A Bridge between East and West Portopalo di Capopassero 11-16 June 2017

Introduction

In view of GAIA, who will provide accurate **parallaxes** for more than 100 billion objects in the next few years, we are working at the **OSIRIS** project (Oscillating Stars with wIneRed near-Infrared Spectroscopy) to obtain homogeneous photomometry and spectroscopy for old (RRLs, T2Cs), intermediate age (MIRAs) and young (CCs) primary distance indicators.

RR Lyrae

- He core and H shell burning
- > 10 Gyr $0.54 - 0.8 \ {
 m M}_{\odot}$ FO × Blazhko ■ -2.5 < [Fe/H] < ~solar Statistical Sample 14 V [mag] 16 18 20 3.0 0.5 1.0 2.0 2.5 1.5 B-R [mag] *Stetson*+ (2014)

RR Lyrae

- He core and H shell burning
- >10 Gyr
- 0.54 0.8 M_o
- -2.5 < [Fe/H] < ~solar
- Statistical Sample

Pulsation properties:

• 0.2d < P < 1d

Variation amplitudes:

- Vmag: 0.2-1.5
 - T: 200-2400 K
- R: 5%-18% R_o
 - V_r: 20-70 km/s

RRL as primary distance indicators

Visual Magnitude-Metallicity (MZ) $M_v = a + b \times [Fe/H]$ **Period-Luminosity** (PL) (Longmore+, 1986) $M = a + b \times \log(P)$ **Period-Luminosity-Metallicity (PLZ)** (Bono+, 2001,2003) $M = a + b \times \log(P) + c \times [Fe/H]$ Precise (2-3%) and accurate **distances** (up to ~ 3.5 Mpc) $d = 10^{1/5(m - M + 5 - A)}$ The extinction dependence can be

overcome with the reddening free [™] **Period-Wesenheit-Metallicity** (PWZ) relation

Empirical calibration of the PLZ-PWZ

What do we need to calibrate PLZ-PWZ?
New parallaxes from GAIA (1° data release in 2016, 2° data release in 2018).

 New metallicity estimates from VIS-NIR high resolution spectroscopy.

NIR vs VIS

- No PLZ-PWZ in the VIS
- Lower amplitudes
- Not affected by non-linearities
- Less affected by reddening
- More interesting lines (C,O,...)

VIS Spectral Analysis

Lines Identification

About 100 lines per spectrum identified Mg, Ca, Ti, Cr, Fe, Ni, Y

Equivalent Widths

Line profile is fitted and EW is measured

Parameter estimates

NGC 3201

NIR Spectral Analysis

Tellurics Subtraction

NIR bands highly affected by sky features.

Tellurics Subtraction

NIR bands highly affected by **sky features**. Tellurics are modelled on each spectrum ...

Tellurics Subtraction

NIR bands highly affected by sky features. Tellurics are modelled on each spectrum and subtracted

Abundance Analysis				
Same procedure as in the optical.				
Two metal poor field RRLs				
WY Ant:	18 lines	UV Oct:	40 lines	
[Fe/H]~ -2.00	- C I : 1	[Fe/H] ~ -1.80	- C I : 8	
	- Mg I : 1		- Mg I : 2	
	- Si I : 10		- Mg II : 2	
	- S I : 2		- Si I : 15	
	- Ca I : 1		- S I : 3	
	- Ca II : 2		- Ca I : 1	
	- Sr II : 1		- Ca II : 3	
			- Fe I : 2	

- Sr II : 2

Abundance Analysis				
Same procedure as in the optical. Two metal poor field RRLs				
WY Ant:	18 lines	UV Oct:	40 lines	
[Fe/H]~ -2.00	- C I : 1	[Fe/H] ~ -1.80	- C I : 8	
	- Mg I : 1		- Mg I : 2	
	- Si I : 10		- Mg II : 2	
	- S I : 2		- Si I : 15	
	- Ca I : 1		- S I : 3	
	- Ca II : 2		- Ca I : 1	
	- Sr II : 1 🔨		- Ca II : 3	
	No or few iron lines		- Fe I : 2	
			- Sr II : 2	

Parameter estimates

Abundances

Consistency with RRLs high-resolution spectroscopy in the literature for [α/Fe], [Sr/Fe], [C/Fe].

Assuming [Fe/H] = -1.95 for WY Ant (For+ 2011)

SUMMARY

- RR Lyrae stars are primary distance indicators
- PLZ-PWZ relations permit us to estimate distance with high precision and accuracy, but they need to be calibrated
- Equivalent widths method is effective and consistent both in the VIS and NIR
- Homogeneous metallicity scale can be obtained for cluster and field stars
- Distances and metal abundances will give the base to understand the Milky Way evolution history

THANKS