CHEMICAL ENRICHMENT BY SUPERNOVA EXPLOSIONS IN ABELL 3112 GALAXY CLUSTER OUT TO R₂₀₀

> Cemile Ezer Boğaziçi University, ISTANBUL

The Fourth Azarquiel School of Astronomy Italy

15.06.2017

Introduction and Motivation

Galaxy Clusters

• Clusters of galaxies are the largest concentrations of confined matter in the Universe.

Credit: X-ray image by NASA/CXC/M.Markevitch et al.; optical image by NASA/STScI, Magellan/U.Arizona/D.Clowe et al.; lensing map image by NASA/STScI, ESO WFI, Magellan/U.Arizona/D.Clowe et al.

Basic Constituents:

- 84 % Dark Matter
- I3 % Hot dilute gas (ICM)
- 3 % Galaxies

Typical Properties:

- 30 -300 galaxies
- Total Mass: ~ 10¹⁴-10¹⁵ M[®]
- Size: ~ 2 5 Mpc
- Temperature: ~10⁷-10⁸ K

Introduction and Motivation

Chemical Enrichment by Supernova Explosions

 The types of supernova explosions (SNe) enriching the ICM can be broadly classified in two types; Type Ia (SN Ia) and core collapse (SN cc).

Туре	SN la	SN cc
Spectra	Si, S, Fe, Ni	O, Ne, Mg, Si
Explosion	Thermonuclear explosion (low-mass stars)	Core-collapse (massive stars)
SN Yields	W7 & W70 (199) WDD & CDD (199) CDDT & ODDT (M10)	I0-50 M⊙ 0-I.0 Z⊙ ^(I99)

*199: Iwamoto et al., The Astrophysical Journal Supplement Series, 125, 2, 1999. *M10: Maeda et al., The Astrophysical Journal, 712, 1, 2010.

Cemile Ezer

Methodology

- snapec is a recently developed XSPEC model. This method calculates the total number of SNe explosions and measures the spatial distribution of the ratio of type Ia (SN Ia) to core collapse (SN cc) supernova explosions by directly fitting the X-ray spectra.
- Model combines apec with all up-to-date relative abundance scenarios (~ 124 different yields).
- Model parameters are:

kT: Temperature
N^{SNe}: Total number of SN explosions
R: Percentage of SN la contribution
SNIModelIndex: Type la SN yields
SNIIModelIndex: Core Collapse SN yields
z: The cluster's redshift
Norm: Emission measure

*snapec: Bulbul et al., The Astrophysical Journal, 753, 1, 2012

Analysis

Abell 3112

Abell 3122 is an archetypal relaxed cool core cluster at redshift 0.0752, making it ideal target for studying its chemical enrichment history.

Results I: Global Spectral Properties: IT apec Model

*The best fit parameters of Suzaku observations, I σ statistical errors together with systematics are over-plotted.

*Ezer et al., The Astrophysical Journal, 836, 1, 2017

Cemile Ezer

Results	The Fourth Azarquiel School of Astronomy	5/10
---------	--	------

Results 2: Global Spectral Properties: IT Vapec Model

- We further investigate the radial abundance distributions of individual α-elements, such as silicon (Si), sulfur (S), iron (Fe), and magnesium (Mg) out to R₂₀₀.
- The Fe, Si, S, and Mg elemental abundances are allowed to vary independently while other elemental abundances are fixed to the measured Fe abundance at the outskirts, 0.25Z₀.

*Ezer et al., The Astrophysical Journal, 836, 1, 2017

Results

Results 3: Chemical Enrichment History: SNapec Model

To investigate chemical enrichment history out to R₂₀₀ of Abell 3112, we fit the innermost spectra (Region 1) with IT snapec model for various SN yields.

Table I: Best Fit parameters of snapec model for the innermost (0' - 2') region.

We find that ID delayed detonation WDD model for SN Ia is the best describing the Suzaku data of the immediate core region.

The 2D delayed detonation symmetric CDDT model can at best achieve fits that are less significant than other models, suggesting they are not a dominant process enriching the ICM.

SN la Model	N _{SNe} (x10 ⁹)	R (N ^{Ia} /N ^{cc})	C-stat (dof)
W7	3.61 ± 0.16	0.10 ± 0.01	2.4 (840)
W70	3.59 ± 0.25	0.10 ± 0.02	1108.9
WDD	3.24 ± 0.10	0.12 ± 0.02	1108.1
CDD	3.18 ± 0.15	0.12 ± 0.01	1108.8
CDDT	3.08 ± 0.28	0.41 ± 0.09	73.3
ODDT	3.06 ± 0.21	0.18 ± 0.03	1112.3

Cemile Ezer

Results

Results 3: Chemical Enrichment History: SNapec Model

 To determine the distribution of SN fraction out to R₂₀₀ rather than individual testing, we use WDD model which gives the best fit for the highest signal-to-noise region.

Region 4 Region 3	5 arcmin ≺───≻	Table 2*: Best Fit parameters of snapec model parameters with 1σ statistical and systematic uncertainties are added in quadratures.				
Region 2 Region 1		SN Models	Regions (arcmin)	N _{SNe} (x10 ⁹)	R	C-stat (dof)
		(66)	0' - 2'	3.24 ± 0.10	0.12 ± 0.02	1108.1 (840)
R500		(199) 0-1 Z⊙	2' - 4'	1.96 ± 0.36	0.16 ± 0.02	1079.9 (842)
Region 5		×DΠ M⊙, 0	4' - 6'	1.48 ± 0.13	0.12 ± 0.04	1008.9 (850)
	200	SN la: c: 10-5(6' - 8'	1.22 ± 0.12	0.13 ± 0.05	337.3 (259)
Regio	n 6	Z S	8' - 18'	0.87 ± 0.17	0.11 ± 0.06	244.2 (151)

*Ezer et al., The Astrophysical Journal, 836, 1, 2017

Results 3: Chemical Enrichment History: SNapec Model

Conclusions

- Deep Suzaku (1.2 Ms of total XIS exposure) and Chandra (72ks) observations of Abell 3112.
- Global spectral features with single and multi temperature structure: temperature peaks around ~ 4.8 keV and declines to 3.37 keV in the virial radius.
- The metallicity of the ICM: 0.22 ± 0.08 Z_☉ (near the virial radius) consistent with Virgo & Perseus. Uniform Fe profile at radius > 0.2R₂₀₀.
- Snapec (XSPEC model) for calculation of SN Ia to SN cc ratio.
- Our results favor ID W7, CDD, and WDD SN Ia models. (A 2D delayed detonation SN Ia model CDDT produces less significant fits compared to priors, overestimate the observational Si abundance).
- The fractional distribution of the SN Ia (199 WDD) to SN cc between 0.12-0.16. (In agreement with the observed fraction in our Galaxy!)
- The distribution of the SN Ia fraction is fairly UNIFORM out to R₂₀₀ indicating:
 - Metal enrichment at an early epoch (z~2-3)
 - Mixing originating from an intense period of star formation activity
 - Metals are well-mixed into the ICM

BACKUP

Suzaku Observations:

Deep (~I.2 Ms) Suzaku Observations

Position	ObsID	Total Exposure Time (ks)	Clean Exposure Time (ks)	Observation Date
On-axis	803054010	67.5/67.5/67.5	54.9/54.9/54.9	2008
On-axis	808068010	9. / 9. / 9.	113.5/113.5/113.5	2013
On-axis	808068020	65.4/65.4/65.4	54.4/54.4/54.4	2013
Offset	809116010	107.9/107.9/107.9	87.3/87.3/87.3	2014
Offset	809116020	97.9/97.9/97.9	80.4/80.4/80.4	2014

Total exposure time is ~ 1.37 Ms and after restrict filtering we have ~1.17 Ms

Chandra Observations and Data Reduction:

Chandra Observations

Position	ObsID	Total Exposure Time (ks)	Clean Exposure Time (ks)	Observation Date
On-axis	13135	42.8	42.2	2011
Offset	6972	30.2	29.7	2006

- Total exposure time is ~ 73 ks and after filtering we have ~71.9 ks
- CIAO: Ic_clean and wavdetect routines to detect the point sources.

The Background and Systematic Uncertainties

- We include various background components:
 - Non X-Ray Background (NXB)
 - Cosmic X-Ray Background (CXB)
 - Soft X-Ray Background (LHB, GH, HF)
- We used cluster emission free region (r> 18') together with ROSAT All Sky Survey data (RASS) to determine the background parameters.

- We include various systematic uncertainties related to:
 - Cosmic X-Ray Background (CXB)
 - Soft X-Ray and Particle (Non X-Ray) Background
 - Point Spread Function (PSF) and Scattered Light

Background Results:

We optimize the background parameters by simultaneously fitting the ROSAT All Sky Survey data (RASS) with the local background. (C-stat (dof) = 507.3 (341))

Component	kT (fixed)	Normalization	Flux $(0.5-2.0 \text{ keV})$
	(keV)	10^{-8} cm^{-5}	$10^{-16} \text{ ergs s}^{-1} \text{ cm}^{-2}$
GH	0.3	$0.8\substack{+0.7 \\ -0.6}$	$0.14\substack{+0.09 \\ -0.09}$
$_{ m HF}$	0.75	$1.2^{+0.3}_{-0.3}$	$0.34_{-0.07}^{+0.07}$
LHB	0.1	$68.4_{-6.4}^{+6.2}$	$1.29_{-0.11}^{+0.12}$

- CXB Norm=1.41+/- 0.14 × 10^{-7} photons keV⁻¹ cm⁻² s⁻¹ arcmin⁻²
- We fixed all these background parameters for further analysis.

Systematic Uncertainties: Cosmic X-Ray Background (CXB)

We found our Suzaku observations' point source detection limit as

 $S_{excl} = 6.7 \times 10^{-14} \text{ ergs cm}^{-2} \text{ s}^{-1}$

in the 2.0

The lσ e

The model for the population of the sources

	Region 1	Region 2	Region 3	Region 4	Region 5
$\begin{array}{c} \text{CXB Fluctuations} \\ 10^{-12} \text{ergs } \text{cm}^{-2} \text{s}^{-1} \text{deg}^{-2} \end{array}$	10.10	5.78	4.48	3.78	2.12

$$\sigma_B{}^2 = \frac{1}{\Omega} \int_0^{S_{excl}} \left(\frac{dN}{dS}\right) \times S^2 \ dS \longrightarrow N(>S) = N_0 \Big[\frac{(2 \times 10^{-15})^{\alpha}}{S^{\alpha} + S_0^{\alpha - \beta} S^{\beta}}\Big]$$

Systematic Uncertainties: PSF and Scattered Light

 To estimate the magnitude of the uncertainty related to Suzaku mirror PSF (~ 2'), we use the ray-tracing simulator xissim to simulate a point source in our Suzaku field-of-view (FOV).

	Region 1	Region 2	Region 3	Region 4	Region 5
Region 1	68.5	15.6	3.47	1.33	0.33
Region 2	14.3	65.6	16.4	2.25	0.38
Region 3	0.24	17.7	64.5	13.7	0.82
Region 4	0.26	1.52	15.2	66.8	6.81
Region 5	0.09	0.27	0.79	7.06	89.2

Results 4: Gas Mass Fraction

 Our results at R₅₀₀ are comparable to the values of the cosmic baryon fraction from 9-year WMAP results.

Our work
$$f_{gas} = 0.21 \pm 0.16/-0.11$$

WMAP $f_B = \frac{\Omega_B}{\Omega_M} = 0.166 \pm 0.0065$

- More data is needed to give an accurate result.
- A detailed analysis (including mass of the galaxies) is required to well better constrain to cosmic baryon fraction of the Universe.