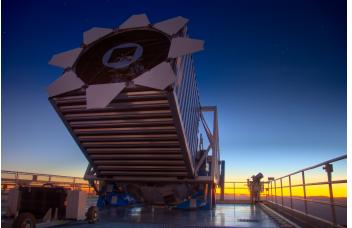
Numerically inverting the fundamental stellar parameters of A/F stars

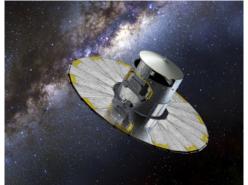
Sarkis Kassounian¹

NDU-Louiaze

June 13, 2017

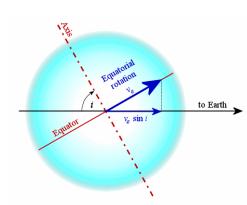

The Fourth Azarquiel School of Astronomy

¹Astrophysics Masters student and Teaching Graduate Assistant at Notre Dame University Louaize(Lebanon)


Sky Surveys

SDSS Sloan Digital Sky Survey

Sky Surveys


Gaia space telescope Complemented Gaia-ESO survey

Star Parameters

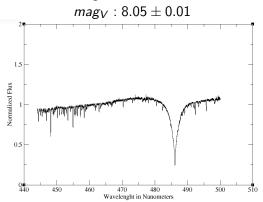
Fundamental stellar parameters:

- T_{eff}
- log(g)
- $\bullet \left[\frac{Fe}{H}\right]$
- $\bullet \xi_t$

In addition to these parameters we can find the $v_e sin(i)$ which is the projected equatorial velocity

The benefit of the parameters

They form constrains for:


- Cosmology
- Galactic chemical evolution and dynamics
- Extra-solar habitability
- And many more....

Spectra from surveys

- Spectroscopic data from many stars
- We need to find its fundamental parameters

HD98377 $RA: 11^{h}19^{min}06^{sec}$ $DEC: +09^{o}45^{arcm}03^{arcsec}$

 $mag_B: 8.17 \pm 0.02$

Finding the parameters numerically

LUT: Look up table

Radiative transfer model of stellar atmospheres \longrightarrow database(synthetic spectra)

- Check Gebran et al.(2016): A new method for the inversion of atmospheric parameters of A/Am stars
- Dr. Mounib Eid's (AUB) Lecture

Inversion

- Observed spectra are compared to synthetic spectra
- The parameters of synthetic spectra with the best fit with the observed are used.

The big data era

- Large quantity of data from surveys
- High resolution spectra ⇒ many flux values(up to 20000)
- Many parameter permutations
- Reaching up to Petabytes $= 10^6$ Gigabytes

YOU WILL NOT LIVE TO SEE YOUR RESULTS!!!!

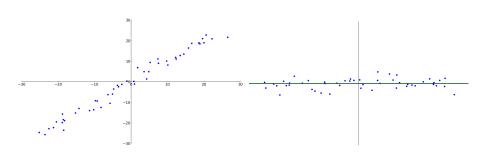
Dimension Reduction

I will share with you my secret numerical recipes!

- PCA: Principle Component Analysis
- SIR: Sliced Inverse Regression

These 2 techniques are used to reduce the dimension of the spectra

PCA


- PCA was invented in 1901 by Karl Pearson
- Finds a lower dimensional space and projects all the data on this new subspace using the covariance matrix.

$$C = (S - \bar{S})^T (S - \bar{S}) \tag{1}$$

- S is the row matrix of spectra
- \bar{S} is the matrix of average of spectra (identical rows)
- N eigenvectors with largest eigenvectors of C form the new eigenbasis
- In Gebran et al.(2016) N=12 (Dimension lowered from 20000 to 12)

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

2D to 1D example

SIR

- SIR was elaborated by Ker-Chau Li(1991)
- We adopted reducing the dimension of spectra into 1

Estimation of Mars surface physical properties from hyperspectral images using Sliced Inverse Regression Caroline Bernard-Michel, Sylvain Douté, Laurent Gardes, Stephane Girard

SIR

- Doing regression vs parameters
- ullet Calculate a **sorted** covariance matrix of all spectra: Σ
- Find covariance matrix of averages of slices: Γ
- Finally the eigenvector of the largest eigenvector

$$\Sigma^{-1}\Gamma\tag{2}$$

Serves as an eigenbasis

BERNARD-MICHEL ET AL.: RETRIEVAL OF MARS SURFACE PROPERTIES

11 X 10⁴

10 Slice H

The within-slice variance is mainimized

11 In behinder-slice is mainimized

12 Slice 3

Slice 3

Slice 3

Slice 3

Slice 3

Slice 1

-0.06 -0.04 -0.02 0 0.06 (a) 0.04 0.05 0.08 0.1 0.12

Latest work on the topic

- $\Sigma^{-1}\Gamma$ is ill-posed(ill-conditioned)
- At <u>NDU Louaize Lebanon</u> in collaboration with <u>Paul Sabatier University-Toulouse-France</u> as a part of my masters thesis , we are working to regularize this covariance matrix and make it well-conditioned (well-posed)

Latest work on the topic

PCA has been applied on stars with high accuracy of parameter value in the works of:

- ullet Gebran et al.(2016) \longrightarrow For A and F stars
- ullet Paletou, Gebran et al.(2015) \longrightarrow For M dwarfs
- New tests of SIR will be done on A and F stars aiming to achieve higher accuracy of parameters.

Grazie per il tuo tempo!!

Thank you for your time!!