Probing homogeneity of the Cosmos using Quasars

Atul Kedia

University of Notre Dame, USA

Presented at The Fourth Azarquiel School of Astronomy, Italy

June 12, 2017

Introduction

- The Cosmological Principle
- Quasars from SDSS Methods of measuring
 - Homogeneity and Calculations
 - Comoving Distance calculation
 - Absolute Magnitude and K-Correction

- Volume Limited Sample
- Scaled Number Counts
- Minkowski-Bouligand Dimension
- Fractal dimensions calculated
- Bootstrap resampling technique
- 4 Random sample

The Cosmological Principle states that the universe is **homogeneous** and **isotropic**. The cosmological principle implies that, at a large enough length scales, observers at different points in space would observe the universe to be the same and all directions would be indistinguishable for the observers.

Current understanding:

Some works have calculated and found homogeneity to be achieved at length scales of $70h^{-1}$ Mpc $- 80h^{-1}$ Mpc. Other works suggest a **fractal like structured** universe. (Pietronero, 1987

and Coleman & Pietronero 1992)

SDSS III: Data Release 10

The SDSS data

Three subsamples in survey coordinates (λ, η) ranges.

Comoving Distance¹ (D_C) is defined as the distance between two objects that remains constant if the two move along with the **Hubble flow**. This gives us their position in cartesian coordinates.

$$D_C = D_H \int_0^\infty \frac{dz'}{E(z')} \tag{1}$$

where z is the redshift, D_H the Hubble distance

$$D_H = \frac{c}{H_0} \tag{2}$$

and E(z') given by

$$E(z) = \sqrt{\Omega_M (1+z)^3 + \Omega_K (1+z)^2 + \Omega_\Lambda}$$
(3)

¹Hogg D. W., 2000, arXiv

Atul Kedia (University of Notre Dame)

Absolute magnitude(M) is calculated using the Apparent Magnitude(m), the comoving distance(D_C) and a K-correction term. Hogg D.W., 2000 described Luminosity distance(DL) and Distance Modulus(DM) which lead to the Absolute magnitude (M).

$$D_{L} = (1+z)D_{H} \frac{1}{\sqrt{|\Omega_{K}|}} sin \left[\sqrt{|\Omega_{K}|} \frac{D_{C}}{D_{H}} \right]$$
(4)
$$DM = 5 \log \left(\frac{D_{L}}{10pc} \right)$$
(5)
$$M = m - DM - K$$
(6)

Where K is the **k**-correction of magnitude.

Volume Limited Sample

Quasars, due to their brightness, can be observed at large distances easily. The presence of low brightness quasars at small distances (redshift) suggests the **presence of low brightness quasars** at larger redshifts though not detected.

A Volume Limited Sampling technique is employed to correct for these, so that the **density** of quasars remains unchanged with increasing radius.

Count-in-spheres $n_i (< R)$ - No. of quasars within a distance of R from ith guasar.

Averaged count-in-spheres $N_A(< R)$ - Average of $n_i(< R)$), for all *i*.

Nc

Scaled Number Count
$$\mathcal{N}(< R) = \frac{\sum\limits_{i=1}^{\sum} \rho_i^{2} \left(\frac{N_A(< R)}{N_{R_i}(< R)} \right)}{\sum\limits_{i=1}^{N_c} \rho_i^{2}},$$

At homogeneity,

 $N_A(< R) \propto R^D$ $\mathcal{N}(< R) \sim 1$

Correlation Integral²:-

$$C_q(R) = \frac{1}{MN} \sum_{i=1}^{M} [n_i(< R)]^{(q-1)}$$
(7)

where, N is the total number of quasars and M is the number of quasars used for this particular value of R. q represents different moments of the quasar counts.

Minkowski-Bouligand Dimension:-

$$D_q(R) = \frac{1}{(q-1)} \frac{\mathrm{d} \log C_q(R)}{\mathrm{d} \log r}$$
(8)

²Prakash Sarkar, et al. 2009

Atul Kedia (University of Notre Dame) Probing hon

Fractal dimensions calculated

Figure 1: D_3 calculated for Quasar sample 3.

Atul Kedia (University of Notre Dame)

Probing homogeneity of the Cosmos

We employ bootstrap resampling technique to estimate the standard deviation in the calculated D_q s.

- Ten bootstrap resamples were generated randomly.
- **2** The aforementioned calculations for correlation integral($C_q(R)$) and fractal dimension($D_q(R)$) was performed.
- Standard deviation among the $D_q(R)$ was evaluated.

Figure 2: D₃ calculated for Quasar sample 3

Atul Kedia (University of Notre Dame)

Probing homogeneity of the Cosmos

Figure 3: Averaged D_3 calculated for Quasar sample 3.

Atul Kedia (University of Notre Dame) Prob

Probing homogeneity of the Cosmos

June 12, 2017 13 / 19

Figure 4: Averaged D_3 calculated for Quasar sample 2.

Atul Kedia (University of Notre Dame)

Probing homogeneity of the Cosmos

June 12, 2017 14 / 19

 $D_q(150)$ v. q

Figure 5: D_q v. q for $R = 150h^{-1}$ Mpc

Atul Kedia (University of Notre Dame)

Probing homogeneity of the Cosmos

Figure 6: D_q v. q for $R = 200h^{-1}$ Mpc

Quasar data and Random sample

Figure 7: D_2 for quasar data and random sample

Atul Kedia (University of Notre Dame)

Probing homogeneity of the Cosmos

June 12, 2017 17 / 19

Quasar data and Random sample

Figure 8: D_{-3} for quasar data and random sample

Atul Kedia (University of Notre Dame)

Probing homogeneity of the Cosmos

June 12, 2017 18 / 19

Thanks to Prof. Subhabrata Majumdar (TIFR, India) and Dr. Prakash Sarkar (NIT Jamshedpur, India.)

Reference: Sarkar, Prakash, et al. "The many scales to cosmic homogeneity: Use of multiple tracers from the SDSS." arXiv preprint arXiv:1611.07915 (2016).