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» Digitizing electronics: the data flow problem;
GARFIELD+RCo: an overview of the FEE boards;

Pulse shape discrimination (PSD): an introduction;
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On-board real-time PSD using linear filters;

Results and conclusions.
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Digital Acquisition: Data Flow Problems
Distributed Data Elaboration

Det.
Pros: J’
> reduced data throughput; FEE
> reduced storage space for ’l'
raw data; Storage Space
» faster PC analysis. (RAW DATA)

Cons:
4

» once and for all signal

analysis; PC Analysis
» chosen a priori; J,
» more complex FEE board. Storage Space

(FINAL DATA)




- The GARFIELD+RCo apparatus
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M. Bruno et al., EPJ A 49(2013)
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Distributed Data Elaboration
GARFIELD+RCo old FEE board

> variable gain stage;

» 12-bit, 125 MHz digitizer, 2V range;

» DSP for on-board signal processing and external interface;
» overall 9.5 ENOB (ADC and input stage);

» NO SIGNAL TRANSMITTED, ONLY FINAL DATA;

» several publications (http://www.bo.infn.it/nucl-ex/).

140 mm

G. Pasquali et al.,,NIM A 507 (2007)
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Distributed Data Elaboration
GARFIELD+RCo new FEE board

two independent channels;

v

variable gain/offset stage;
14-bit, 125 MHz digitizer, 2V range;
DSP: interface with VME bus;

Cyclone Il FPGA: FIFO and online
real-time signal processing;

» overall 11.5 ENOB (ADC and input
stage);

» NO SIGNAL TRANSMITTED;

» ONLY FINAL DATA;.

v vV

v

P. Ottanelli, Master Thesis, 2016
http://www.bo.infn.it /rem /tesi.htm
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Pulse shape discrimination (PSD)

Working Principle

— -
Pulse Shape Discrimination (PSD)
> isotopic identification of stopped nuclear fragments;

» charge distribution (Bragg Curve) depends on A and Z;

v

different distributions— different shapes for i(t) and q(t);

v

info on A and Z can be extracted from signal shape;



Pulse shape discrimination (PSD)

Working Principle

G. Pasquali et al.,EPJ A 50 (2014)
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» different distributions— different shapes for i(t) and q(t);
» info on A and Z can be extracted from signal shape;

» measure shape-sensitive parameters (e.g. Qrise,/max);
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Pulse shape discrimination (PSD)

Working Principle

N. Le Neindre et al.,NIM A 701 (2013)
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different distributions— different shapes for i(t) and q(t);
info on A and Z can be extracted from signal shape;
measure shape-sensitive parameters (e.g. Qrise,/max);

better performances with rear injection.
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PSD: the need for interpolation

» Measure of shape sensitive parameters— shape reconstruction;

» Samples not always sufficient to achieve a good measure—
interpo|ation.(c‘ Pastore et al.,accepted for publication on NIM A)

Interpolating Function: f(t) =), c,K(t/ts — n)
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- Interpolation through LTI filter

< ) ;l LTI Filter ,( )
hin]

coefficient of interpolating function obtained with LTI filter;

v

v

discrete representation of a continuous-time function;

v

LTI filter allows real-time on-board calculations!

v

filter depends on interpolation kernel K.

v

different interpolation kernel — different filter.

v

Configurable filter allows choice of interpolation type!



- Treating the interpolated signal

UP-Sampling
LTI filter!

> C, represents a continuous-time signal;

» digital device can’t handle continuous time domain;

» fine sampling of the signal: Up-Sampling;

» new samples — linear combinations of coefficients.

» Up-sampled signal can be handled on digital device!
» upsampling algorithm uses interpolation kernel K.

» upsampling filter must be configurable.



A further improvement...
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Processing of the interpolated signal
Applying an LTI filter
. UP-Sampling
( :: )—)l LTI Filter 4)' LTI filter!
Filtered Kernel K’

c UP-Sampling
" LTI filter!

» signals are often filtered (e.g. PZC algorithm);

» different filtering—different kernel used for up-sampling;
» configurable upsampling filter — choice of filtering!
» filtering in Continuous time domain!
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From current and charge signal!
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On-board PSD: lyax evaluation
From current and charge signal!
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On-board PSD: lyax evaluation
From current and charge signal!
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On-board PSD: Iyax evaluation.
An example
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On-board PSD: /lyax evaluation.

An example
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single digitizing channel;
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Results: *8Ca+*8Ca
On-board elaboration with GARFIELD FEE

Study of the reaction 48 Ca + *Ca@35 MeV/ /A;
Si(3001m)-Si(50044m)-Csl (FAZIA prototype— Barlini);
GARFIELD new FEE boards used:;

single digitizing channel;

vV V. v v VY

first test with non optimized setup;

v

all data extracted on-board in real-time;

Depleted
Depleted
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particles | &~ | R |7 7
Rear Front




Si2 Energy [MeV]

Results: “8Ca+*8Ca

On-board elaboration with GARFIELD FEE

Energy-Imax correlation, online data, Si2@220V
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Results: “8Ca+*8Ca

On-board elaboration with GARFIELD FEE

Energy-Imax correlation, online data, Si2@220V
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Counts

Results: “8Ca+*8Ca

On-board elaboration with GARFIELD FEE

P1 for Carbon isotopes, online data
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» Si(300um)-Si(500m)-Csl (FAZIA block telescope—Barlini);




- Results: FAZIASYM data, offline analysis

v

Study of the reaction *8Ca + *®Ca@35 MeV/ /A;
Si(30044m)-Si(5001m)-Csl (FAZIA block telescope—Barlini);
FAZIA FEE boards used (—Valdre);
three digitizing channels (2 gains for charge, 1 current);
offline reproduction of the described algorithms.
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Results: FAZIASYM data, offline analysis

Imax from current signal sampled at 250MHz, 14 bits.
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Data source: FAZIA collaboration, http://fazia.in2p3.fr/
Reaction: “8Ca + *8Ca @ 35 MeV/A.



Results: FAZIASYM data, offline analysis

Imax from charge signal (High Gain) sampled at 250MHz, 14 bits.
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Results: FAZIASYM data, offline analysis

Imax from charge signal (High Gain) sampled at 250MHz, 14 bits.
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Data source: FAZIA collaboration, http://fazia.in2p3.fr/
Reaction: *®Ca + *®Ca @ 35 MeV/A.



- Garfield FEE Firmware

v

Trapezoidal shaper with PZC (Energy measure);

v

Bipolar shaper for trigger generation (CFD);

v

Configurable interpolation and upsampling filters;

v

Internal trigger logic;

External interface.

v
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» GARFIELD+RCo FEE undergoing an upgrade;

» increased FEE performances;

» focus on moving signal processing from DSP to FPGA;
» studied algorithms for on-board real-time PSA;

> first preliminary tests— encouraging results;

» confirmed by offline analysis on better signals;

» FEE commissioning scheduled 7-8 april 2017 @ LNL;

> further tests on the algorithms will be done.



Thanks for your attention!



- Interpolation through LTI filter

Given a signal x[n] by definition an interpolating function is a
function of the type

F(t) = cmK(t/ts — m)
passing for the samples. Hence

x[n] = f(nts) Z cmK(n—m) = F(c)

where Fis an LTI filter with impulse response h[n] = K(n).
By inverting the relation then

cm = F1(x)
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- Interpolation: Box Splines

» functions widely used for interpolation (e.g. imaging);

» B-Spline of n-th order — piecewise polynomial function with
continuity up to (n — 1)th derivative;

» Cubic B-Spline is ideal for treating physical signals

N G




- Cubic B-Spline interpolation
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- Cubic B-Spline interpolation

M.Unser, IEEE TSP 1993 41:

Cubic Spline interpolation realizable with IIR linear filter, impulse
response
h[n] = V3a!"! a=+3-2

Problem:
» h[n] — infinite length;
» real-time signal— infinite length;
» IMPOSSIBLE TO

CALCULATE
bln] =" h[{m]x[n — m]I!!

m=—0o0

hin]

d n > approximative calculation by
truncation of h[n].



- Interpolating filter implementation
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- Interpolating filter implementation

x[n] X[n] cln]
o— M.A. INT. UPS. COMP.—

xy[ml ylnl

» linear filter (INT.) produces the coefficients;

» Upsampling filter (UPS.) produces 10 samples of the current
signal every clock cycle;

> a pipelined algorithm (COMP.) compares 10 samples per
clock cycles;

» only the maximum samples is kept (1 per clock), producing a
signal with no upsampling;



- Interpolating filter implementation

x[n] x[n] c[n] Imax
o— M.A. INT. UPS. COMP. MAX—e

xy[ml ylnl

» linear filter (INT.) produces the coefficients;

» Upsampling filter (UPS.) produces 10 samples of the current
signal every clock cycle;

> a pipelined algorithm (COMP.) compares 10 samples per
clock cycles;

» only the maximum samples is kept (1 per clock), producing a
signal with no upsampling;

» when triggered, the blue block (MAX) searches for the
maximum of its input signal



