Investigation of ceramic based Resistive Plate Chambers for high rate beam environments

GDS Meeting Legnaro 2017 Lothar Naumann

HZDR

HELMHOLTZ | ZENTRUM DRESDEN | ROSSENDORF

Dr. Lothar Naumann | Institute of Radiation Physics | www.hzdr.de

Outline

- 1. Resistive Plate Chambers (RPC) with low resistive ceramic electrodes for high rate capability
- The Beam Fragmentation T₀ Counter (BFT₀C) in the framework of the Compressed Baryonic Matter (CBM) Experiment
- 3. RPC tests with electrons and pions for BFT₀C

RPC mode of operation

RPC with time resolution $\leq 100 \text{ ps}$

Ceramics

rough ceramics as sintered:

- Ø ≈ 30 cm
- d ≈ 3.5 mm
 mixing ratio:
- Si₃N₄/SiC
 (80%/20%)

Ceramics

Fraunhofer Institute:

- cutting
- grinding
- polishing
- rounding

HZDR:

- cleaning
- drying
- ρ-measurement

Resistive Plate Chambers @ HZDR

RPC area	gas gap design			anode design		
[cm²]	number	size [µm]	separator	number	length [cm]	width [cm]
2x2	3x2	250	ceramics	1	2	2
5x5	2	300	kapton	1	5	5
5x5	3x2	250	ceramics	1	5	5
10x10	2x2	250	fishing line	8	10	1
10x10	2x2	300	mylar	8	10	1
20x20	2x2	250	fishing line	16	20	1.125
20x20	2x2	300	mylar	16	20	1.125
20x20	6	250	fishing line	32	20	0.375

Mitglied der Helmholtz-Gemeinschaft

Electron accelerator ELBE @ HZDR

Detector test facility @ ELBE

RPC – efficiency (e)

Mitglied der Helmholtz-Gemeinschaft

RPC – timing (e, p)

Mitglied der Helmholtz-Gemeinschaft

RPC rate capability

- Important scopes of High Energy Heavy Ion experiments are start-time and reaction-plane determination.
- For the Compressed Baryonic Matter Experiment (CBM) at FAIR the use of RPC with low resistive radiation hard ceramics electrodes and small chess-board like single cells is under consideration for the Beam Fragmentation T₀ Counter.

Challenges of the BFT₀C region:

- High-rate capability up to ≥ 2x10⁵cm⁻²·s⁻¹
 - \rightarrow one floating electrode per cell
- Timing resolution: **6** ≤ **60** ps
- Efficiency: ≥ **98** %
- Double-hit suppression: $\leq 2 \% \rightarrow$ cell size 20x20 mm²
- Cross-talk suppression: ≤1-2%

→ RPC with low resistive ceramics electrodes and chessboard like single cell design are under consideration

Mitglied der Helmholtz-Gemeinschaft

Particle flux (UrQMD) 6 m behind the target on the BFT₀C

Ceramics for RPC

Mitglied der Helmholtz-Gemeinschaft

Demonstrator design

In order to find optimal resistivity value for BFT_0C conditions and requirements Si_3N_4/SiC floating electrodes with a bulk resistivity from 10^7 to $10^{12}\Omega$ ·cm were tested.

Overlapping mid of groove

8 RPCs assembled in the gas box

Mitglied der Helmholtz-Gemeinschaft

Gas mixture

BFT₀C – signal amplitudes

Quite uniform RPC construction \rightarrow all chambers in mini-module can be put under the same voltage

BFT₀C – efficiency (electrons)

• $2 \times 10^{10} \Omega$ cm: ϵ fast degrease with flux

• $5x10^8 \ \Omega cm$: ϵ is not capable to get on the efficiency plateau: unstable work and lots of streamers starting from 87-88 kV/cm

 3x10⁹ Ωcm: most suitable resistivity order for our aims

Mitglied der Helmholtz-Gemeinschaft

BFT₀C - time resolution

Time resolution : $G_{RPC} = 90-140 \text{ ps}$ Time start stamp: $G_{RF} = 35 \text{ ps}$

Mitglied der Helmholtz-Gemeinschaft

Pion test facility @ CERN

Beamline: T10 Pion rate: few kHz/cm² Gas: 90% Freon + 10% SF₆ Electronics: MAX376012 Trigger scint. size: 20x20 mm² Start system: G_{RF} = 50 ps

Mitglied der Helmholtz-Gemeinschaft

BFT₀C - test @ CERN (pions)

- Pion efficiency ε ≈ 98 %
 3% higher than for 30 MeV electrons
- Time resolution $G \ge 90$ ps comparable with electron results

Mitglied der Helmholtz-Gemeinschaft

Dr. Lothar Naumann I L.Naumann@hzdr.de I Institut of Radiation Physics I www.hzdr.de

Summary

- A Beam Fragmentation T₀ Counter of 120x120 cm² in the innermost region of the CBM TOF wall with 2x2 cm² chess-board like single RPC cells is under consideration.
- Radiation hard low resistive Si₃N₄/SiC composite is a candidate for the floating electrodes of the RPC cells.
- A manufacturing process has been developed to produce ceramic electrodes with a bulk resistivity varying between 10^8 and $10^{10} \Omega$ cm.
- The outer electrodes are Cr-plated Al_2O_3 sheets with a central contact pin.
- The dark count rate has been reduced to 0.5 Hz/cm² by special material treatments .
- To define the most suitable bulk resistivity for the BFT₀C, eight RPC cells of different bulk resistivity have been investigated. $3 5 \times 10^9 \Omega$ cm is the most suitable resistivity order for our aims.
- RPC tests with relativistic electron beam fluxes of up to 2x10⁵ cm⁻²s⁻¹ have been provided.
- The detection efficiency amounts to 98 % and is sufficient for CBM, while the time resolution amounts to 90 ps and needs still further improvement.

Outlook

- Estimation of streamer excitation
- Implementation of PADI-FEE
- Radiation hardness test of powered RPC cells with fast neutrons
- Cost reduction by modern technology employment for Si₃N₄/SiC ceramics composite production
- Assembling of a 32-modular demonstrator with $3 5 \times 10^9 \Omega$ cm electrodes

Acknowledgment:

Helmholtz-Zentrum Dresden-Rossendorf HZDR - Dresden/Germany Institute of Radiation Physics: J. Dreyer, X. Fan, B. Kämpfer, R. Kotte, A. Laso Garcia, D. Stach

Institute for Theoretical and Experimental Physics ITEP - Moscow/Russia: A. Akindinov, D. Malkevich, A. Nedosekin, V. Plotnikov, R. Sultanov, K. Voloshin

HZDR

HELMHOLTZ | ZENTRUM DRESDEN | ROSSENDORF

Dr. Lothar Naumann | Institute of Radiation Physics | www.hzdr.de