A new scintillator detector for nuclear physics experiments: the CLYC scintillator

Franco Camera1 and Agnese Giaz2

1Università di Milano and INFN sezione di Milano

2INFN sezione di Milano (current affiliation Università di Padova and INFN sezione di Padova)
Outline

✔ Characterization measurements on new scintillators (SrI₂, CeBr₃, CLYC)
✔ CLYC
 • Enrichment with ⁶Li (Thermal and fast neutrons)
 • Enrichment with ⁷Li (fast neutrons)
 • Measurements with monochromatic fast neutrons
 • Neutron energy resolution from PSD
 • Continuous neutron spectra
✔ Co Doped LaBr₃:Ce, CLLB and CLLBC crystals
✔ LaBr3:Ce with SIPM
✔ Summary
Scintillators in nuclear physics experiments

Detector requirements:

- Measurement of low and high energy gamma rays (0.1 - 15 MeV) → Good efficiency
- Good Time resolution
 - background rejection
 - TOF measurements
- Imaging properties to reduce Doppler Broadening
- Energy resolution is not mandatory but very useful for:
 - calibration
 - measurement and studies of discrete structures
- Possibility to discriminate between gamma rays and neutrons using TOF and PSD

<table>
<thead>
<tr>
<th>Material</th>
<th>Light Yield [ph/MeV]</th>
<th>Emission λ_{max} [nm]</th>
<th>En. Res. at 662 keV [%]</th>
<th>Density [g/cm2]</th>
<th>Principal decay time [ns]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaI:Tl</td>
<td>38000</td>
<td>415</td>
<td>6-7</td>
<td>3.7</td>
<td>230</td>
</tr>
<tr>
<td>CsI:Tl</td>
<td>52000</td>
<td>540</td>
<td>6-7</td>
<td>4.5</td>
<td>1000</td>
</tr>
<tr>
<td>LaBr$_3$:Ce</td>
<td>63000</td>
<td>360</td>
<td>3</td>
<td>5.1</td>
<td>17</td>
</tr>
<tr>
<td>SrI$_2$:Eu</td>
<td>80000</td>
<td>480</td>
<td>3-4</td>
<td>4.6</td>
<td>1500</td>
</tr>
<tr>
<td>CeBr$_3$</td>
<td>45000</td>
<td>370</td>
<td>\sim4</td>
<td>5.2</td>
<td>17</td>
</tr>
<tr>
<td>GYGAG</td>
<td>40000</td>
<td>540</td>
<td><5</td>
<td>5.8</td>
<td>250</td>
</tr>
<tr>
<td>CLYC:Ce</td>
<td>20000</td>
<td>390</td>
<td>4</td>
<td>3.3</td>
<td>1 CVL 50, \sim1000</td>
</tr>
</tbody>
</table>
The SrI$_2$:Eu scintillator (2” x 2”)

Characterization measurements:
- Energy resolution up to 9 MeV
- Crystal scan along the three axes
- Study of the signal shape

- Energy resolution of ~ 3.2% at 662 keV
- Slow detector (fall time ~ 7 μs)
- Large volume crystals (2” x 2”)
- Self absorption

Presence of self-absorption

Energy resolution up to 9 MeV

Crystal scan along the three axes

Study of the signal shape

4.0% at 662 keV

100 ± 20 keV @ 9 MeV

 Rise: 24 ns
Fall: 7 μs
The CeBr$_3$ scintillator (2” x 3”)

Characterization measurements:
- Energy resolution up to 9 MeV
- Crystal scan along the three axes
- Study of the signal shape

- Energy resolution of ~ 3.5% at 662 keV
- Very similar to Labr$_3$:Ce
- Large volume crystals (3” x 3”) available
- No internal activity

Energy resolution up to 9 MeV

The 9 MeV is at 8.6 MeV (4% non linearity).
The CeBr$_3$ scintillator (3” x 3”)

A. Giaz

CeBr$_3$

LaBr$_3$:Ce

NaI
The CLYC scintillator \((\text{Cs}_2\text{LiYCl}_6:\text{Ce}^{3+})\)

The CLYC crystals were developed approximately 10 years ago.

- Density of 3.3 g/cm³,
- Light yield of 20 ph/keV
- High linearity, especially at low energy.
- Energy resolution at 622 keV < 5%
- Time resolution of 1.5 ns.
- Excellent neutron gamma discrimination.

\[
FOM = \frac{C_{\text{neutron}} - C_{\text{gamma}}}{FWMH_{\text{neutrons}} + FWMH_{\text{gamma}}} \approx 3.9
\]

\[
PSD \text{ ratio} = \frac{W2}{W1 + W2}
\]
Neutron detection

Fast neutrons:
- $^{35}\text{Cl}(n,p)^{35}\text{S} \rightarrow Q\text{-value} = 0.6 \text{ MeV} \sigma \approx 0.2 \text{ barns at } E_n = 3 \text{ MeV}$
- $^{35}\text{Cl}(n,\alpha)^{32}\text{P} \rightarrow Q\text{-value} = 0.9 \text{ MeV} \sigma \approx 0.01 \text{ barns at } E_n = 3 \text{ MeV}$

$$E_{p/\alpha} = (E_n + Q) q_{p/\alpha} \rightarrow p \text{ or } \alpha \text{ energy is linearly related to } n \text{ energy} \rightarrow \text{CLYC is a neutron spectrometer}$$

$$E_n > 6 \text{ MeV} \text{ other reaction channels on detectors isotopes } \rightarrow \text{not easy neutron spectroscopy}$$

Thermal neutrons:
- $^6\text{Li}(n,\alpha)t \rightarrow Q\text{-value} = 4.78 \text{ MeV} \sigma = 940 \text{ barns at } E_n = 0.025 \text{ eV}$.

To fast neutron detection:
- $^7\text{Li} (^7\text{Li} > 99\%)$ enriched CLYC \rightarrow CLYC-7

The kinetic energy of the neutrons can be measured via:
1) Time of Flight (TOF) techniques.
2) The energy signal

To Thermal neutron detection:
- $^6\text{Li} (^6\text{Li} = 95\%)$ enriched CLYC \rightarrow CLYC-6

Two measurements:
- Monochromatic neutrons
- Continuous neutron spectrum of an $^{241}\text{Am}/^{9}\text{Be}$ source
Fast Neutron Detection with CLYC

<table>
<thead>
<tr>
<th>Proton Energy [MeV]</th>
<th>Detector Angle</th>
<th>Neutron Energy [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>0°</td>
<td>3.83</td>
</tr>
<tr>
<td>5</td>
<td>0°</td>
<td>3.33</td>
</tr>
<tr>
<td>4.5</td>
<td>0°</td>
<td>2.83</td>
</tr>
<tr>
<td>5.5</td>
<td>90°</td>
<td>2.68</td>
</tr>
<tr>
<td>5</td>
<td>90°</td>
<td>2.30</td>
</tr>
<tr>
<td>4.5</td>
<td>90°</td>
<td>1.93</td>
</tr>
</tbody>
</table>

A. Giaz et al., NIM A 825, (2016), 51
Fast Neutron Detection with CLYC

<table>
<thead>
<tr>
<th>Proton Energy [MeV]</th>
<th>Detector Angle</th>
<th>Neutron Energy [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>0°</td>
<td>3.83</td>
</tr>
<tr>
<td>5</td>
<td>0°</td>
<td>3.33</td>
</tr>
<tr>
<td>4.5</td>
<td>0°</td>
<td>2.83</td>
</tr>
<tr>
<td>5.5</td>
<td>90°</td>
<td>2.68</td>
</tr>
<tr>
<td>5</td>
<td>90°</td>
<td>2.30</td>
</tr>
<tr>
<td>4.5</td>
<td>90°</td>
<td>1.93</td>
</tr>
</tbody>
</table>

A. Giaz et al., NIM A 825, (2016), 51
Fast Neutron detection with CLYC

The energy of the outgoing proton is linearly related to the energy of the incoming neutron.

\[E_n = \frac{E_{\text{mis}}}{q} - Q \]
Continuous neutron spectra

A continuous neutron spectra can be measured using the time vs energy matrices (gated on PSD).

The blue region includes contribution of 35Cl(n,p)35S reaction only

Note:
PDS identify an incoming neutron but not its energy
TOF identify a neutron or a delayed γ-ray

Using both information it is possible to identify a neutron and to measure its energy
241Am/9Be Source

241Am/9Be source:

\[^{241}\text{Am} \rightarrow ^{237}\text{Np} + \alpha \ (E_\alpha \sim 5.5 \ \text{MeV}) \]

\[\alpha + ^9\text{Be} \rightarrow ^{13}\text{C} \ (Q = 5.7 \ \text{MeV}) \]

\[^{13}\text{C} \rightarrow n + ^{12}\text{C} \ (E_n < 11.2 \ \text{MeV}) \]

\(^{12}\text{C}\) can be in different states:

- **Ground state**: \(Q = 5.7 \ \text{MeV} \)
- **1st excited state**: \(Q = 1.3 \ \text{MeV}, \ E_\gamma = 4.439 \ \text{MeV} \)
- **2nd excited state**: \(E_{th} = 2.8 \ \text{MeV}, \ E_\gamma = 7.654 \ \text{MeV} \)
- **3rd excited state**: \(E_{th} = 5.7 \ \text{MeV}, \ E_\gamma = 9.641 \ \text{MeV} \)

Neutron spectra measured in coincidence with a 4.439 MeV \(\gamma \) ray using the TOF technique.

Measurement of the $^{241}\text{Am}/^9\text{Be}$ spectrum

PDS to separate neutrons from gammas.

$E_n = E_{\text{mis}}/q - Q$

$E_n < 7$ MeV: dominant reaction is $^{35}\text{Cl}(n,p)^{35}\text{S}$

till $E_n < 4$ MeV, for higher energies it is necessary to separate different contributions. \Rightarrow using TOF techniques.
New Scintillators

New scintillator materials are available in small size (ENSAR2-PASPAG Project)

<table>
<thead>
<tr>
<th>Material</th>
<th>Light Yield [ph/MeV]</th>
<th>Emission λ_{max} [nm]</th>
<th>En. Res. at 662 keV [%]</th>
<th>Density [g/cm2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaI:Tl</td>
<td>38000</td>
<td>415</td>
<td>6-7</td>
<td>3.7</td>
</tr>
<tr>
<td>CLYC:Ce</td>
<td>20000</td>
<td>390</td>
<td>> 4</td>
<td>3.3</td>
</tr>
<tr>
<td>CLLBC:Ce</td>
<td>45000</td>
<td>410</td>
<td>< 3</td>
<td>4.1</td>
</tr>
<tr>
<td>CLLB:Ce</td>
<td>55000</td>
<td>410</td>
<td>< 3</td>
<td>4.2</td>
</tr>
</tbody>
</table>

CLYC \Rightarrow Cs$_2$LiYCl$_6$
CLLB \Rightarrow Cs$_2$LiLaBr$_6$

CLLBC \Rightarrow Cs$_2$LiLa(Br,Cl)$_6$

These new crystals are available since few months

CLYC 3”x3” is available since 2016 only

Co-doped LaBr$_3$:Ce
- Co-doping should improve the linearity at low energy
- Co doping should improve energy resolution
- No large volume detectors available (maybe first in 2017)

A. Giaz

New sensors- Large Area SiPM

Individual SiPM properties:

- Technology: NUV-HD produced by FBK
- Active area: 6 x 6 mm² (39600 mcells)
- Microcells size: 30 x 30 mm²
- Cell density: 1100 mcells/mm²
- FF (Fill Factor): 77%
- PDE (Particle Detection Efficiency (con FF)) (@380 nm, Vov = 6V): 43.5%
- DCR (Dark Count Rate) (Vov = 6V): 68 kcps/mm²
- ENF (Excess Noise Factor): 1.19

Modular Structure

- 1"
- 2"
- 3"
LaBr$_3$:Ce (2'' x 2'') coupled to SiPM

Results can be improved:
There were 4 cells (6 mm x 6 mm) not working LaBr$_3$ not in the center to cover the least possible of these 4 cells.
New arrays in production at FBK
Conclusions

Several new scintillators are or will be soon on the market

- CLLB, CLLBC CoDoped LaBr$_3$:Ce, CLYC, CeBr$_3$, SrI$_2$, ...
- Their detailed performances are not fully known
- Several studies on CLYC were done and will be done
 - Energy Resolution and PSD
 - Neutron spectroscopy
 - Continuous neutron spectra

R&D on light sensor (SiPM) for spectroscopy is starting

THANK YOU FOR THE ATTENTION