

GDS GDS Topical Meeting: GDS coupling to auxiliary detection systems

25-27 January 2017 INFN Laboratori Nazionali di Legnaro

A new scintillator detector for nuclear physics experiments: the CLYC scintillator

Franco Camera¹ and Agnese Giaz²

¹Università di Milano and INFN sezione di Milano

²INFN sezione di Milano (current affiliation Università di Padova and INFN sezione di Padova)

Outline

 ✓ Characterization measurements on new scintillators (Srl₂, CeBr₃, CLYC)
 ✓ CLYC

- Enrichment with ⁶Li (Thermal and fast neutrons)
- Enrichment with ⁷Li (fast neutrons)
- Measurements with monochromatic fast neutrons
- Neutron energy resolution from PSD
- Continuous neutron spectra

✓ Co Doped LaBr₃:Ce, CLLB and CLLBC crystals

- ✓ LaBr3:Ce with SIPM
- ✓ Summary

Scintillators in nuclear physics experiments

Detector requirements:

- ✓ Measurement of low and high energy gamma rays (0.1 15 MeV) → Good efficiency
- ✓ Good Time resolution
 - background rejection
 - TOF measurements
- ✓ Imaging properties to reduce Doppler Broadening
- $\checkmark~$ Energy resolution is not mandatory but very useful for:
 - calibration
 - measurement and studies of discrete structures
- ✓ Possibility to discriminate between gamma rays and neutrons using TOF and PSD

Material	Light Yield [ph/MeV]	Emission λ _{max} [nm]	En. Res. at 662 keV [%]	Density [g/cm ²]	Principal decay time [ns]
Nal:Tl	38000	415	6-7	3.7	230
CsI:TI	52000	540	6-7	4.5	1000
LaBr₃:Ce	63000	360	3	5.1	17
Srl ₂ :Eu	80000	480	3-4	4.6	1500
CeBr₃	45000	370	~4	5.2	17
GYGAG	40000	540	<5	5.8	250
CLYC:Ce	20000	390	4	3.3	1 CVL 50, ~1000

The Srl₂:Eu scintillator (2" x 2")

Characterization measurements:

- ✓ Energy resolution up to 9 MeV
- $\checkmark\,$ Crystal scan along the three axes
- \checkmark Study of the signal shape

A. Giaz et al., NIM A 804, (2015), 212

- Energy resolution of ~ 3.2% at 662 keV
- Slow detector (fall time $\sim 7 \,\mu$ s)
- Large volume crystals (2" x 2") available
- Self absorption

The CeBr₃ scintillator (2" x 3")

Characterization measurements:

- ✓ Energy resolution up to 9 MeV
- $\checkmark\,$ Crystal scan along the three axes
- ✓ Study of the signal shape

A. Giaz

- Energy resolution of ~ 3.5% at 662 keV
- Very similar to Labr₃:Ce
- Large volume crystals (3" x 3") available
- No internal activity

A. Giaz et al., NIM A 804, (2015), 212

The CeBr₃ scintillator (3" x 3")

The CLYC scintillator (Cs₂LiYCl₆:Ce³⁺)

The CLYC crystals were developed approximately 10 years ago.

- ✓ Density of 3.3 g/cm^3 ,
- ✓ light yield of 20 ph/keV
- ✓ high linearity, especially at low energy.
- ✓ Energy resolution at 622 keV < 5%</p>
- ✓ time resolution of 1.5 ns.
- ✓ Excellent neutron gamma discrimation.

Neutron detection

Fast neutrons:

✓ ³⁵Cl(n,p)³⁵S → Q-value = 0.6 MeV $\sigma \approx 0.2$ barns at $E_n = 3$ MeV

✓ ³⁵Cl(n, α)³²P → Q-value = 0.9 MeV $\sigma \approx 0.01$ barns at E_n = 3 MeV

 $E_{p/\alpha} = (E_n + Q) q_{p/\alpha} \rightarrow p \text{ or } \alpha \text{ energy is linearly related to n}$ energy \rightarrow CLYC is a neutron spectrometer

 $E_n > 6$ MeV other reaction channels on detectors isotopes \rightarrow not easy neutron spectroscopy

Thermal neutrons:

✓ ⁶Li(n, α)t → Q-value = 4.78 MeV σ = 940 barns at E_n = 0.025 eV.

To fast neutron detection: ⁷Li (⁷Li > 99%) enriched CLYC→ CLYC-7

The kinetic energy of the neutrons can be measured via:

- 1) Time of Flight (TOF) techniques.
- 2) The energy signal

To Thermal neutron detection: ⁶Li (⁶Li = 95%) enriched CLYC → CLYC-6

Two measurements:

- ✓ Monochromatic neutrons
- ✓ Continuous neutron spectrum of an ²⁴¹Am/⁹Be source

Fast Neutron Detection with CLYC

A. Giaz et al., NIM A 825, (2016), 51

Fast Neutron Detection with CLYC

Fast Neutron detection with CLYC

Continuous neutron spectra

A continuous neutron spectra can be measured using the time vs energy matrices (gated on PSD).

The blue region includes contribution of ³⁵Cl(n,p)³⁵S reaction only

Note:

PDS identify an incoming neutron but not its energy

TOF identify a neutron or a delayed γ -ray

Using both information it is possible to identify a neutron and to measure its energy

12

²⁴¹Am/⁹Be Source

²⁴¹Am/⁹Be source:

²⁴¹Am \rightarrow ²³⁷Np + α (E_{α} ~ 5.5 MeV) α + ⁹Be \rightarrow ¹³C (Q = 5.7 MeV) ¹³C \rightarrow n + ¹²C (E_n < 11.2 MeV)

¹²C can be in different states:

✓ Ground state : Q = 5.7 MeV

- \checkmark 1st excited state: Q = 1.3 MeV, E_y = 4.439 MeV
- \checkmark 2nd excited state: E_{th} = 2.8 MeV E_y = 7.654 MeV
- ✓ 3rd excited state: $E_{th} = 5.7 \text{ MeV } E_{\gamma} = 9.641 \text{ MeV}$

Neutron spectra measured in coincidence with a 4.439 MeV γ ray using the TOF technique.

Measurement of the ²⁴¹Am/⁹Be spectrum

PDS to separate neutrons from gammas.

 $E_n = E_{mis}/q - Q$

 $E_n < 7$ MeV: dominant reaction is ${}^{35}Cl(n,p){}^{35}S$ till $E_n < 4$ MeV , for higher energies it is necessary to separate different contributions. \rightarrow using TOF techniques.

New Scintillators

New scintillator materials are available in small size (ENSAR2-PASPAG Project)

Material	Light Yield [ph/MeV]	Emission λ _{max} [nm]	En. Res. at 662 keV [%]	Density [g/cm ²]
Nal:Tl	38000	415	6-7	3.7
CLYC:Ce	20000	390	> 4	3.3
CLLBC:Ce	45000	410	< 3	4.1
CLLB:Ce	55000	410	< 3	4.2

 $CLYC \Rightarrow Cs_2LiYCl_6$ $CLLB \Rightarrow Cs_2LiLaBr_6$

 $\mathsf{CLLBC} \Longrightarrow \mathsf{Cs}_2\mathsf{LiLa(Br,Cl)}_6$

These new crystals are available since few months

CLYC 3"x3" is available since 2016 only

Co-doped LaBr₃:Ce

- Co-doping should improve the linearity at low energy
- Co doping should improve energy resolution
- No large volume detectors available (maybe A. Giaz

New sensors- Large Area SIPM

Individual SiPM properties:

- ✓ Technology: NUV-HD produced by FBK
- ✓ Active area: 6 x 6 mm² (39600 mcells)
- ✓ Microcells size: 30 x 30 mm²
- ✓ Cell density: 1100 mcells/mm²
- ✓ FF (Fill Factor): 77%
- ✓ PDE (Particle Detection Efficiency (con FF)) (@380 nm, Vov = 6V): 43.5%
- ✓ DCR (Dark Counr Rate) (Vov = 6V):
 68 kcps/mm²
- ✓ ENF (Excess Noise Factor): 1.19

LaBr3:Ce (2" x 2") coupled to SiPM

New arrays in production at FBK

Conclusions

Several new scintillators are or will be soon on the market

- CLLB, CLLBC CoDoped LaBr₃:Ce, CLYC, CeBr₃, Srl₂,
- Their detailed performances are not fully known
- Several studies on CLYC were done and will be done
 - Energy Resolution and PSD
 - Neutron spectroscopy
 - Continuous neutron spectra

R&D on light sensor (SiPM) for spectroscopy is starting

THANK YOU FOR THE ATTENTION