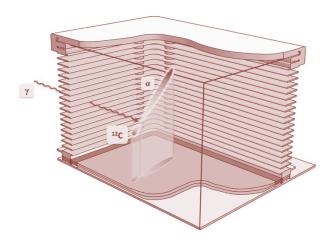
ELITPC – a TPC detector for photonuclear reaction studies using intense, monochromatic gamma-ray beams at the ELI-NP facility

Mikołaj Ćwiok

University of Warsaw, Poland

for ELITPC collaboration: UW, ELI-NP/IFIN-HH, Univ. of Connecticut



Gas-Filled Detection System Topical Meeting: GDS coupling to auxiliary detection systems

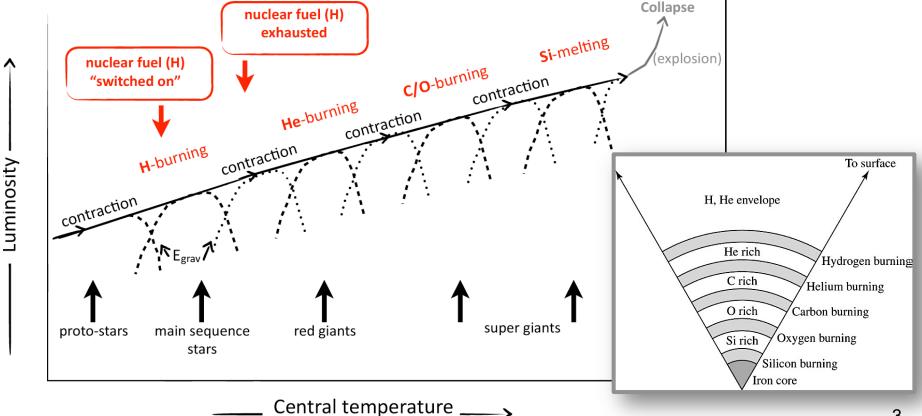
25-27 January 2017 — INFN/LNL, Legnaro, Italy

Outline

- 1. Physics motivation
- 2. ELITPC concept (ELI-NP Time Projection Chamber)
- 3. Status of R&D
- 4. Summary & outlooks

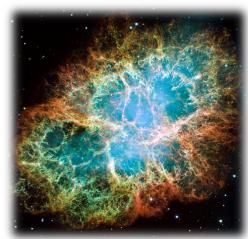
Stellar Nucleosynthesis

- H burning: p-p & CNO cycles, Hot-CNO, Ne-Na, Mg-Al
 → syr
 - → synthesis of **He**


• He - burning: $3\alpha \rightarrow ^{12}C$, $^{12}C(\alpha,\gamma)^{16}O$,

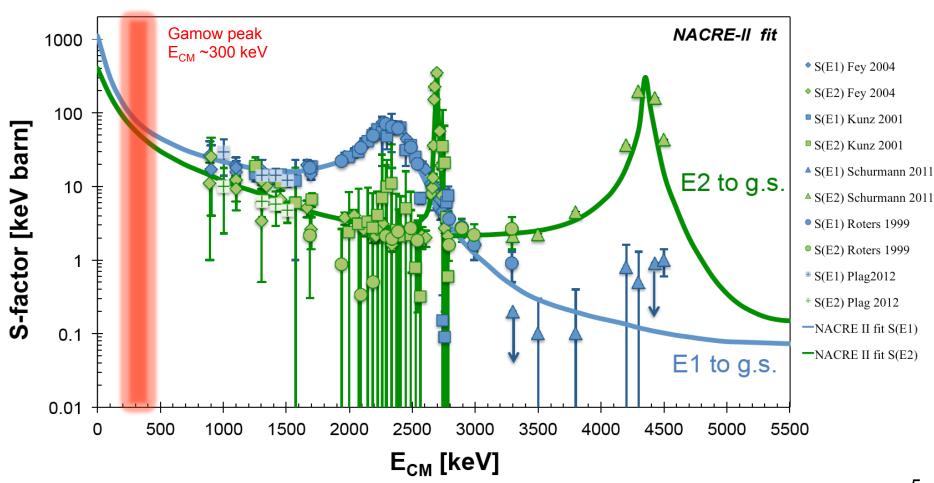
→ synthesis of: C, O, Ne

- Subsequent burning of: C, O, Ne, Si
- \rightarrow synthesis of elements with $16 \le A \le 60$


• **s**, **r**, **p** - processes

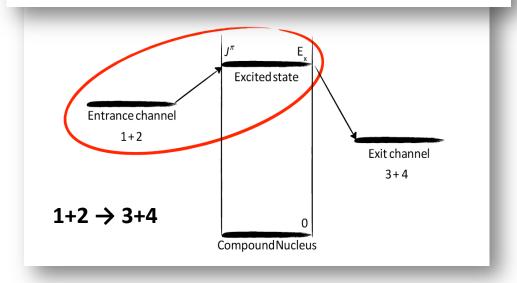
→ synthesis of elements with A ≥ 60

Carbon / Oxygen Ratio


- 4 most abundant elements: H, He, O, C
- Observed C/O ratio = 0.6
- Reactions that regulate C/O ratio in the universe:
 - Bulk of ¹²**C** abundance: 3α -process
 - ¹⁶O is the "ash" of subsequent α-capture reaction: 12 C(α,γ) 16 O
- Significance of C/O ratio:
 - Stars with M > 8 M_o: modelling of C/O ratio during the final phase of He-burning in red giants remains unsolved for 30 years
 - Stars with M ~ 1.4 M_o: explode as Ia-type supernovae thanks to these "standard candles" accelerated expansion of the Universe and existence of the dark energy have been discovered precise modelling of of C/O ratio is needed to describe production of ⁵⁶Ni, which in turn modifies light-curves of these important "standard candles"

Crab Nebula - HST/NAS

Experimental data on $^{12}C(\alpha,\gamma)^{16}O$


 Extrapolated p-wave (E1) & d-wave (E2) astrophysical S-factors to the Gamow peak in red giants: 40 – 80% uncertainty

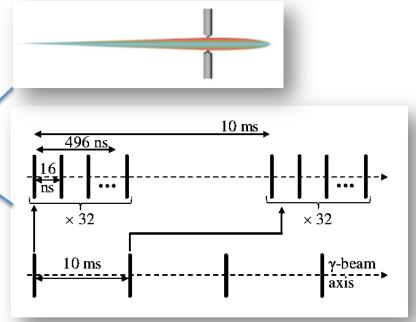
How to improve accuracy?

- Measure time-reverse (photo-dissociation) reaction \rightarrow ¹⁶O (γ , α) ¹²C:
 - strong and e-m interactions invariant w.r.t. time reversal
 - cross sections from detailed balance principle
 - LOW experimental background

$$\frac{\sigma_{12}}{\sigma_{34}} = \frac{m_3 m_4}{m_1 m_2} \frac{E_{34}}{E_{12}} \times \frac{(2J_3 + 1)(2J_4 + 1)}{(2J_1 + 1)(2J_2 + 1)} \times \frac{(1 + \delta_{12})}{(1 + \delta_{34})}$$

REQUIREMENTS:

- Intense, monochromatic
 γ-ray beams
- Detection of low-energy charged products of photo-dissociation reaction


Gamma-ray beam @ ELI-NP

Compton Back Scattering

- High-brilliance, narrow bandwidth, good collimation
- To be commissioned in 2018

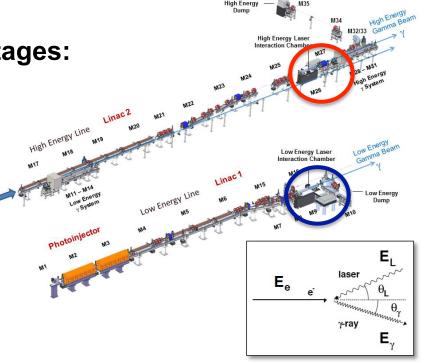
Energy range	0.2 - 19.5 MeV
Energy BW (rms)	< 0.5 %
Spectral density	> 0.5 10³ γ/s/eV
Peak brilliance	10 ²⁰ - 10 ²³ γ/(s mm² mrad² 0.1%BW)
Angular divergence (rms)	25 – 200 μrad
Macro-pulse rate	100 Hz
Linear polarization	> 95%

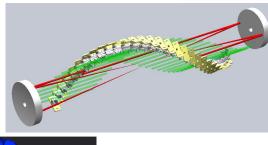
Gamma-ray beam @ ELI-NP

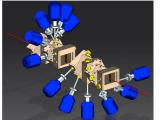
Gamma Beam System (GBS) has 2 stages:

- low energy (E_y<3.5 MeV)
- high energy (E_√<19.5 MeV)

GBS components:

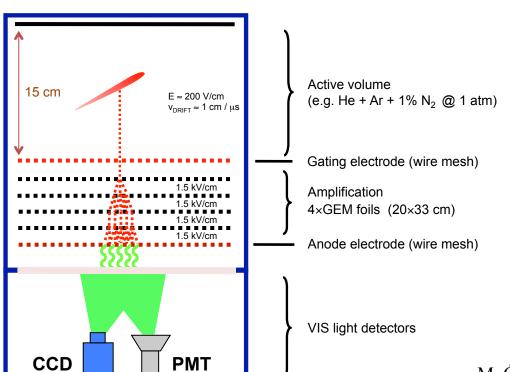

1. Electron LINAC:


- tunable energy: $E_e = 80 720 \text{ MeV}$
- laser photo-injector (32 pulses, 100 Hz rate)
- two stages (Linac1, Linac2)
- total length: 90 m


2. Laser system:

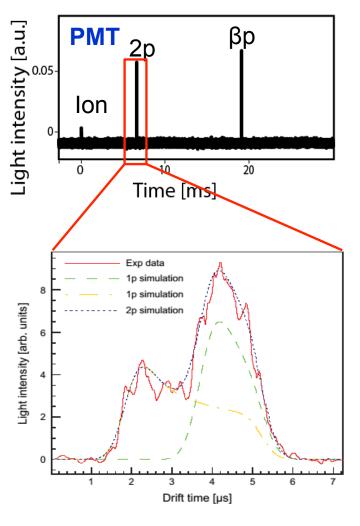
- green light (E_L =2.4 eV, λ =515 nm, 500 mJ / 3.5 ps)
- fixed electron-photon crossing angle (θ_{γ} =7.5°)
- multi-pass laser beam recirculation

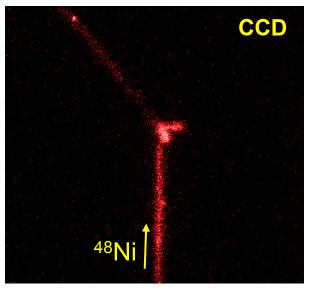
3. Collimation & diagnostics systems

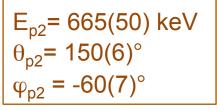


GEM-based TPCs from Warsaw (1)

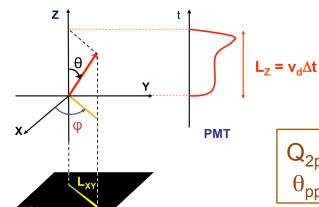
- Active-Target TPCs suitable for 3D kinematic reconstruction of photodisintegration reaction products @ ELI-NP
- Univ. of Warsaw has long-time expertise in developing TPCs based on Gas Electron Multiplier (GEM) amplification structures




- Several TPCs with optical readout constructed since 2004:
- two-proton radioactivity
 2p of ⁴⁵Fe, ⁴⁸Ni @ NSCL/MSU
- β-delayed multi-particle emissions
 β3p of ³¹Ar @ FRS/GSI
- rare decays of He isotopes $^6\text{He} \rightarrow \alpha + \text{d}$ @ Isolde/CERN $^8\text{He} \rightarrow \alpha + \text{t+n}$ @ Acculinna/JINR


M. Ćwiok et al., IEEE TNS 52 (2005) 2895 K. Miernik et al., NIMA 581 (2007) 194

GEM-based TPCs from Warsaw (2)


Reconstruction of 2p decay event of ⁴⁸Ni:

$$E_{p1}$$
= 580(60) keV
 θ_{p1} = 117(7)°
 ϕ_{p1} = 0

CCD

 $Q_{2p} = 1287(80) \text{ keV}$ $\theta_{pp} = 51(8)^{\circ}$

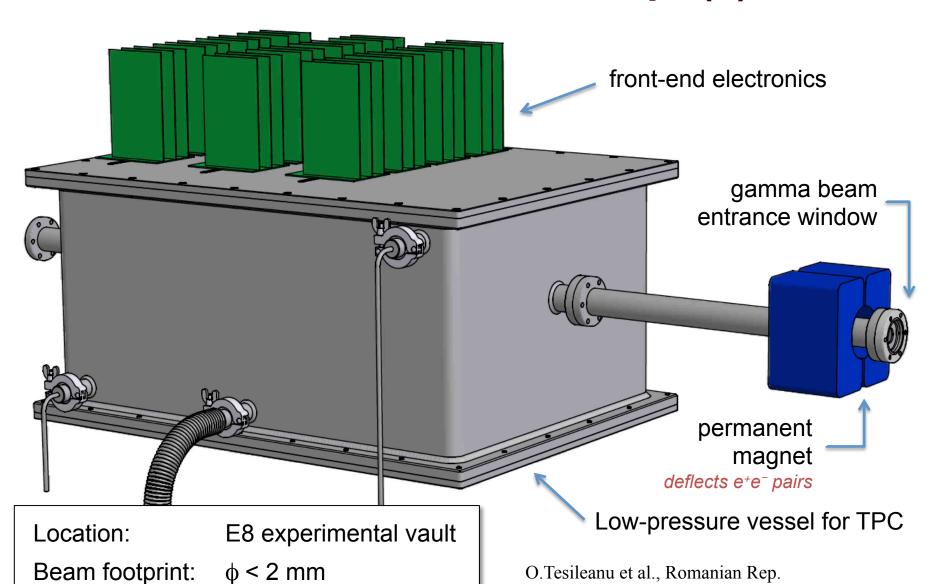
ELITPC detector concept (1)

Active volume:

- 35 x 20 cm² (readout) x 20 cm (drift)
- gas pressure ~100 mbar to increase track lengths

Active volume inside electron drift cage 12 C Gas **E**lectron Multiplier α + ¹²C event from the (GEM) foils photo-dissociation of ¹⁶O Readout $(E_v \approx 8 \text{ MeV or } E_{CM} \approx 0.9 \text{ MeV})$ electrodes (strips)

Charge amplification:

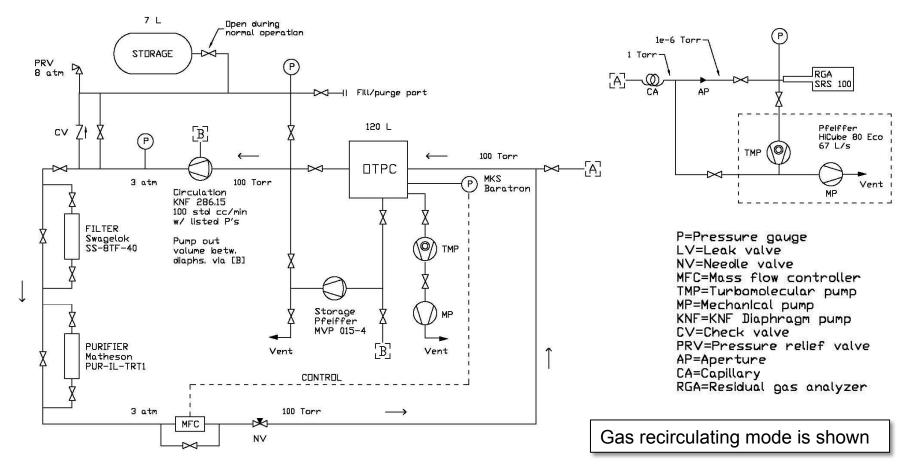

3 GEM foils (or Thick-GEMs)

Readout:

- 3-coordinate, planar,redundant strips (*u-v-w*)
- 1.5 mm strip pitch
- about 1000 channels
- GET electronics for signal amplification & digitization
- external trigger (100 Hz)

O.Tesileanu et al., Romanian Rep. in Phys. 68, Supplement (2016) S699

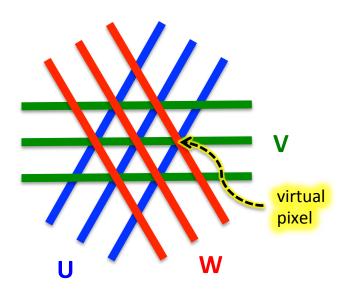
ELITPC detector concept (2)

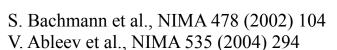

12

in Phys. 68, Supplement (2016) S699

ELITPC detector concept (3)

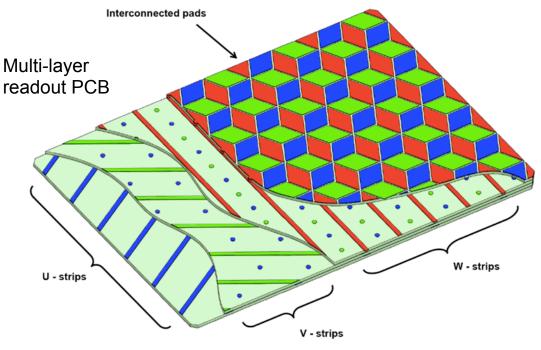
Low-pressure gas system:


- non-recirculating & recirculating (for isotopically enriched gases) operation modes
- design based on OTPC detector @ HIGS/TUNL (Duke University, NC, USA)



ELITPC detector concept (4)

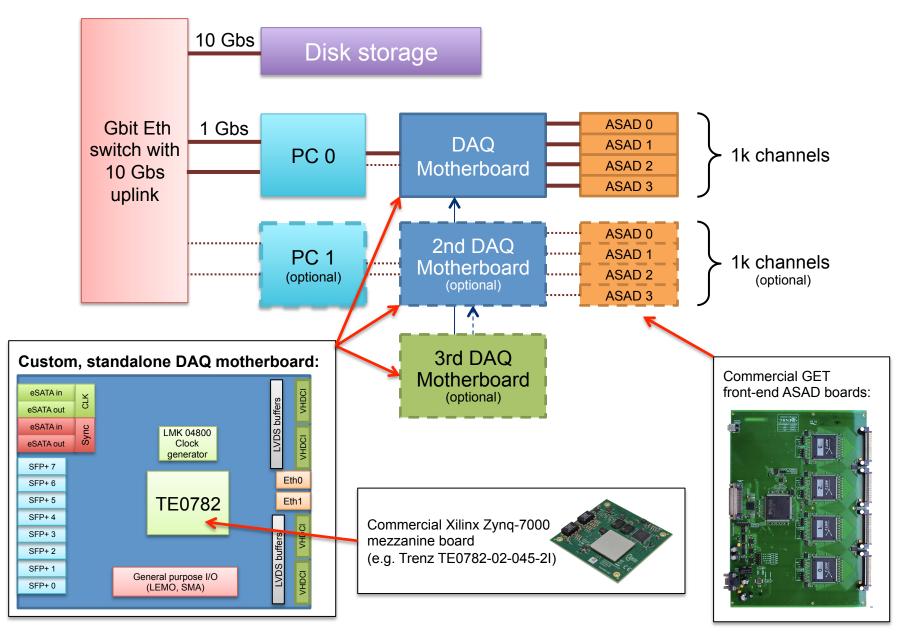
3-coordinate, planar, redundant electronic readout:


- u-v-w strip arrays for hit disambiguation in 2D → virtual pixels
- z-coordinate from timing information
- aimed for relatively simple event topologies → few tracks per event
- need only $O(10^3)$ channels \rightarrow moderate cost of electronics

M. Ćwiok, Acta Phys. Pol. B 47 (2016) 707


J. Bihałowicz et al., Proc. of SPIE 9290 (2014) 92902C

Generic Electronics for TPCs



- Developed by: CEA/IRFU, CENBG, GANIL, MSU/NSCL
 - in use over 20 labs worldwide
- 64-ch ASIC chip (AGET = ASIC for GET):
 - flexible sampling frequency: 1-100 MHz
 - 512 time-cells per channel, analog SCA memory
 - adjustable gain & filtering per channel
- 1024-ch front-end board (AsAd = ASIC & ADC):
 - hosts 4 AGET chips
 - 12-bit ADC, one channel per AGET chip
- Data concentration, timing & trigger boards:
 - big systems: uTCA crate, CoBo boards, MuTant boards (up to 32,000 channels)
 - small systems: standalone FPGA board (up to 256 channels)

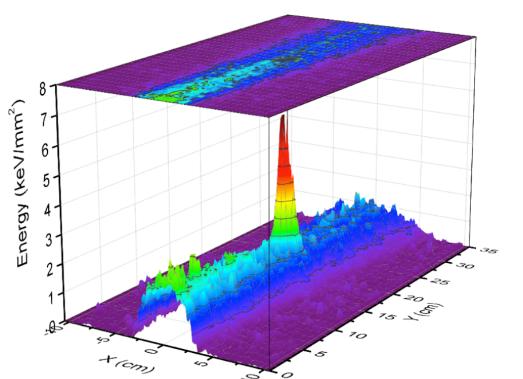
ELITPC – final DAQ concept

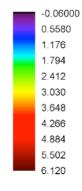
ELITPC – event yields

Time-reverse reaction \rightarrow ¹⁶O(γ , α)¹²C:

– Method:

- measure energy & angular distributions of charged particles
- obtain accurate values of E2 / E1 components
- Efficiency (example for CO₂ @ 100 mbar):
 - beam energy: E_{γ} =8.26 MeV \rightarrow E_{CM} =1.1 MeV [Q=7.162 MeV for $^{12}C(\alpha,\gamma)^{16}O$]
 - beam intensity on target: 2.5 × 10⁴ γ/s/eV, 0.5% bandwidth → 10⁹ γ/s
 - 1500 events to measure angular distributions → 21 days of beam time

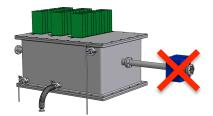

Background:


- main sources of background: Compton electrons & e+e⁻ pairs in gaseous target and in a thin mylar/kapton entrance window
- very small w.r.t. direct (α,γ) reaction experiments

ELITPC – background

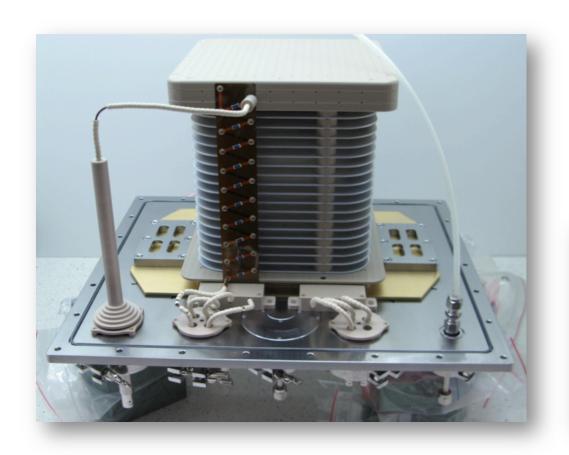
GEANT4 simulation of a single ELI-NP macro-pulse:

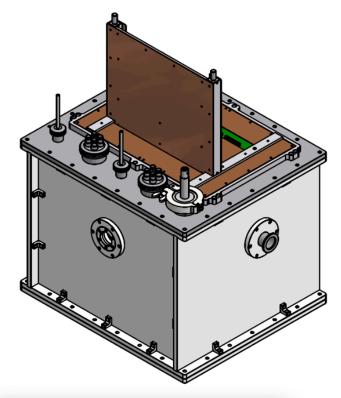
- 10⁷ γ-rays of 8 MeV
- CO₂ at 100 mbar
- 0.5 MeV α-particle track added artificially to mimic ¹⁶O photo-dissociation

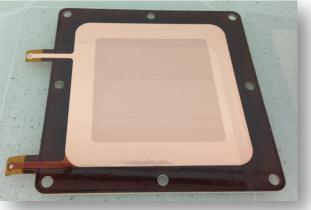


Colors correspond to integrated energy deposits on the 2D readout plane

The most unfavourable scenario is shown:

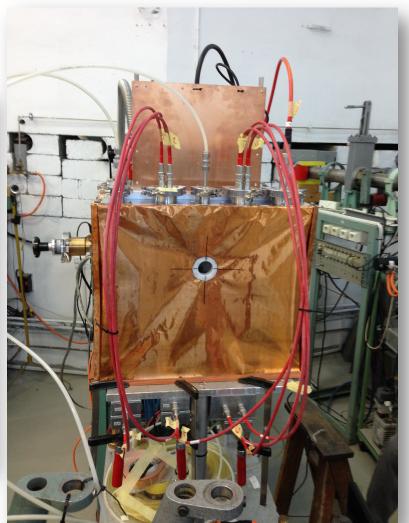

- entrance window very close to the active volume
- no permanent magnet after the entrance window




O. Tesileanu et al., Romanian Rep. in Phys. 68, Supplement (2016) S699

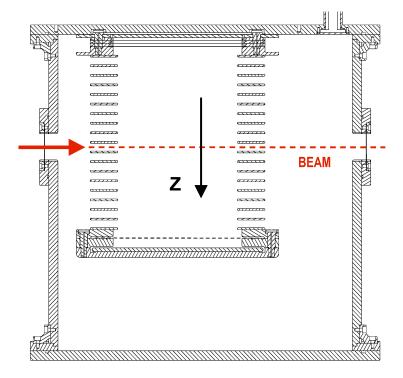
Demonstrator detector (1)

- Readout area: 10 × 10 cm², drift: 20 cm
- GET electronics: 256 channels
- Operating at atmospheric pressure



Demonstrator detector (2)

Tests @ 9 MV Tandem (IFIN-HH, Romania)
 with 15 MeV α-particle beam in April 2016

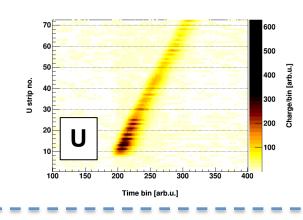


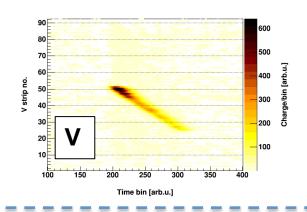
Demonstrator detector (3)

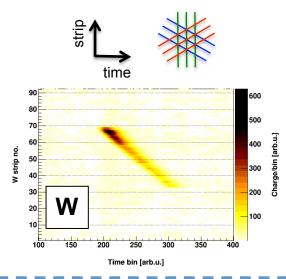
Tests @ 9 MV Tandem (IFIN-HH, Romania)
 with 15 MeV α-particle beam in April 2016

gas mixture: He+CO₂ (70:30) @1 atm

entrance window: 3μm Mylar

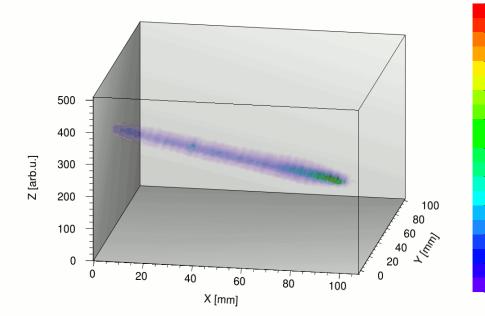

Virtual pixel Beam # of channels: U=72, V=92, W=92


SIDE view - XZ plane along beam axis

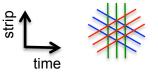

TOP view – XY readout plane

Demonstrator detector (4)

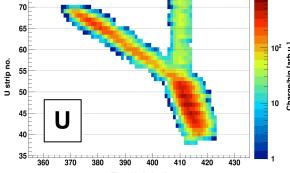
- Example #1: Single track from α-particle beam:
 - Gas mixture: He+CO₂ (70:30) @1 atm

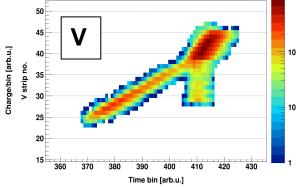


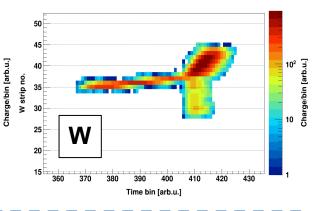
Energy losses [arb.u.]

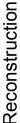

Reconstructed α -particle track in 3D

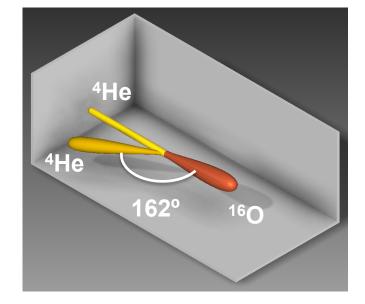
Raw data

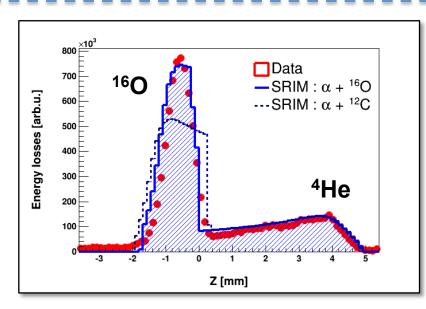


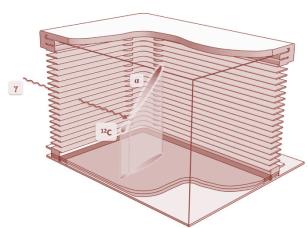

Demonstrator detector (5)


- Example #2: event with 3 tracks from ⁴He + ¹⁶O scattering:
 - Gas mixture: He+CO₂ (70:30) @1 atm









Summary

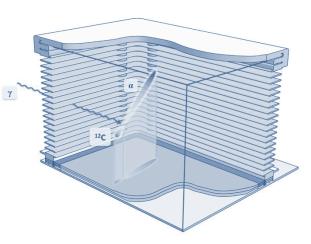
- ELITPC detector approved as one of DAY-1 experiments for ELI-NP.
- 256-ch demonstrator detector is operational:
 - first beam tests (with charged particles) done in 2015 and 2016
 - proof-of-principle of the readout method
 - detector works with GET electronics
- UW and ELI-NP signed a 2-year R&D contract for designing a full-scale, low-pressure detector (Oct 2016 – Oct 2018):
 - in time for beam commissioning at end of 2018
- Other physics cases with ELITPC @ ELI-NP:
 - other astrophysical reactions (different gas targets)
 - nuclear structure physics (clustering phenomena)
 - nano-dosimetry & radiation damage to DNA

Some R&D outlooks

Compare 50-µm GEMs vs 125-µm Thick-GEMs at low pressures:

- selected He + CO₂ gas mixtures
- pressure range: 100-500 mbar

Test demonstrator detector at low pressures:


- influence of diffusion, attachment & gas purity on charge collection efficiency
- correcting for electronics effects → signal de-convolution, inter-channel calibration
- different 3D reconstruction methods → clustering, Hough transform, SRIM simulations

Adapt GET electronics for specific needs of ELITPC:

- develop standalone Zynq FPGA readout board optimized for O(1000) channels
- collaboration with: CEA-IRFU, CENBG, GANIL, MSU/NSCL

Realistic GEANT4 background simulations:

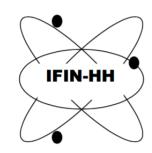
- optimization of readout structure & number of channels
- better S/N ratio

ELITPC Collaboration (Jan 2017)

Univ. of Warsaw, Poland

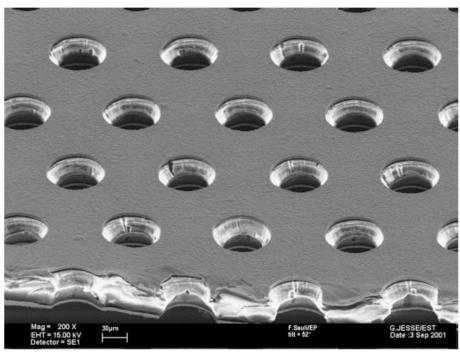
M. Bieda, J.S. Bihałowicz, M. Ćwiok, W. Dominik, Z. Janas, Ł. Janiak, J. Mańczak, T. Matulewicz, C. Mazzocchi, M. Pfützner, P. Podlaski, S. Sharma, M. Zaremba

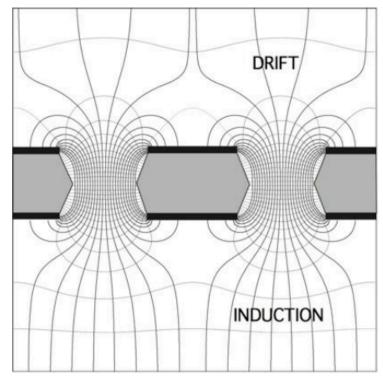
IFIN-HH / ELI-NP, Romania


D. Balabanski, A. Bey, D.G. Ghita, O. Tesileanu

Univ. of Connecticut, USA

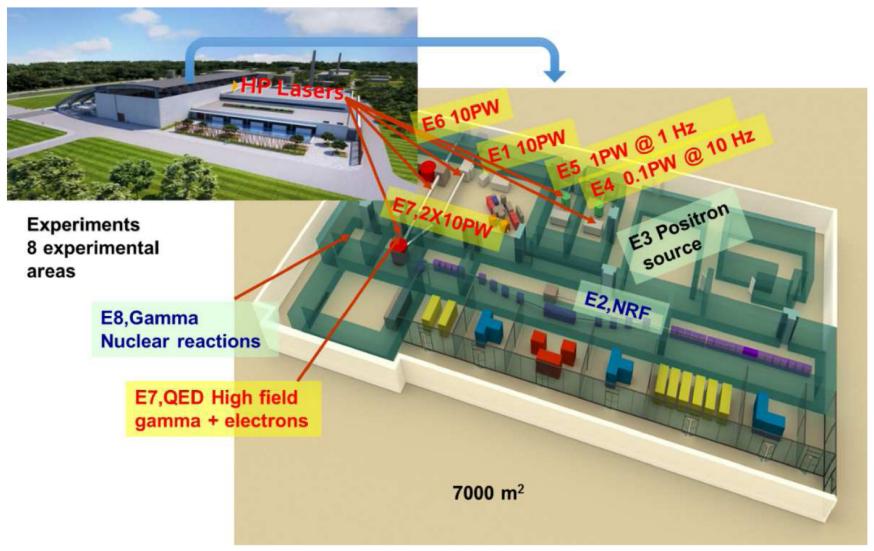
M. Gai, D.P. Kandellen


BACKUP SLIDES

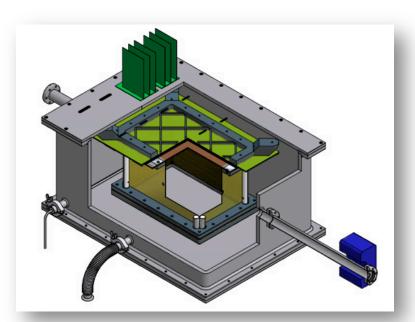

Gas Electron Multiplier (GEM)

GEM charge amplification structures:

- developed at CERN in late 1990's
- thickness: Kapton 50 μm, copper 5 μm
- electric fields ~40 kV/cm, electron charge gain factors ~10³
- several GEM foils can be stacked together


F. Sauli, NIM A386 (1997) 531

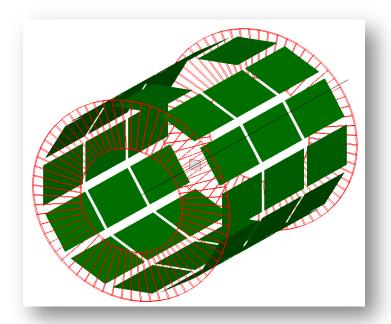
ELI-NP facility layout


DAY-1 γ-ray beam experiments @ ELI-NP for charged particles detection

ELITPC

active gaseous target

low-pressure Time Projection Chamber

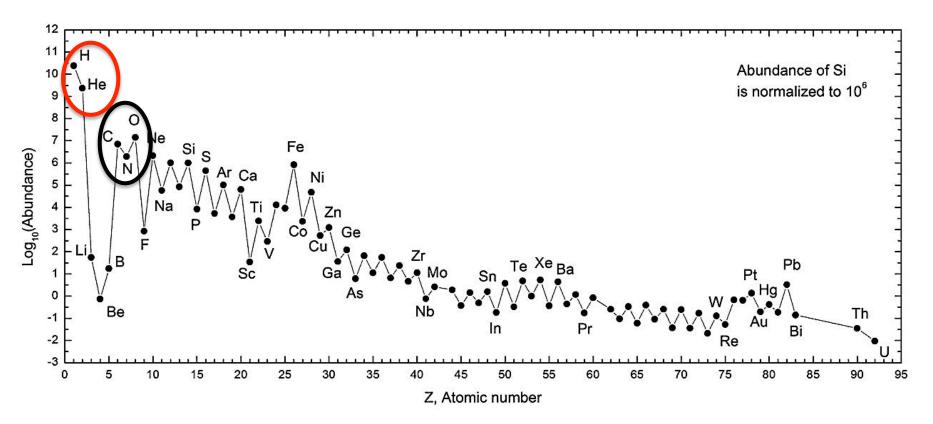

U. of Warsaw, ELI-NP/IFIN-HH, U. of Connecticut

ELISSA

solid, removable target
Silicon Strip Detector array in vacuum

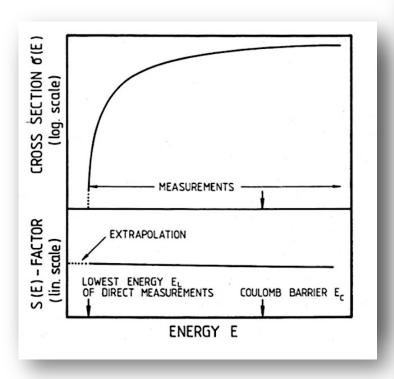
INFN-Catania, ELI-NP/IFIN-HH

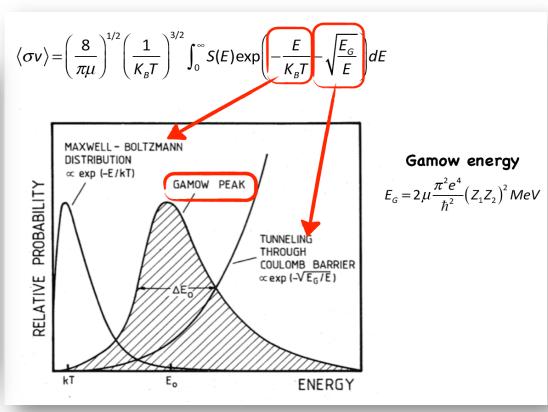
Day-1 γ-beam experiments @ ELI-NP for charged particles detection


Nuclear Astrophysics studies:

- use detailed balance principle for time-reverse reactions
- measure decay products of nuclear photo-dissociation reactions

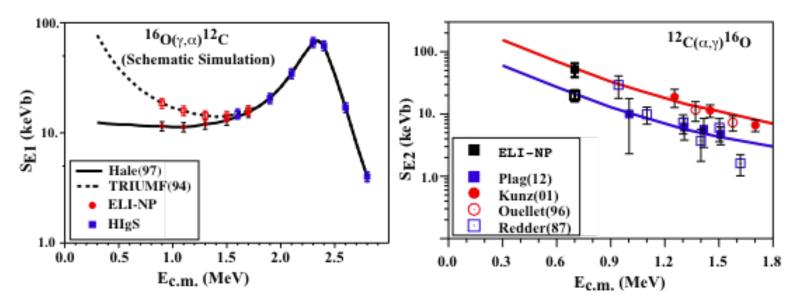
Time-reverse reaction	Detector type	Target	Astrophysical relevance
$^{16}\mathrm{O}(\gamma,\alpha)^{12}\mathrm{C}$	TPC	CO ₂	ratio C/O
¹⁹ F(γ,p) ¹⁸ O	TPC	CF₄	ratio ¹⁶ O/ ¹⁸ O, CNO-cycle
21 Ne $(\gamma,\alpha)^{17}$ O	TPC	²¹ Ne	role of ¹⁶ O as neutron poison
²² Ne(γ , α) ¹⁸ O	TPC	²² Ne	ratio ¹⁶ O/ ¹⁸ O, CNO-cycle synthesis of ²² Ne (source of <i>n</i> in <i>s</i> -processes)
24 Mg(γ , α) 20 Ne	SSD	²⁴ Mg	Si-burning
96 Ru(γ , α) 92 Mo	SSD	⁹⁶ Ru	synthesis of elements with A>73 in p-processes


Abundance of chemical elements

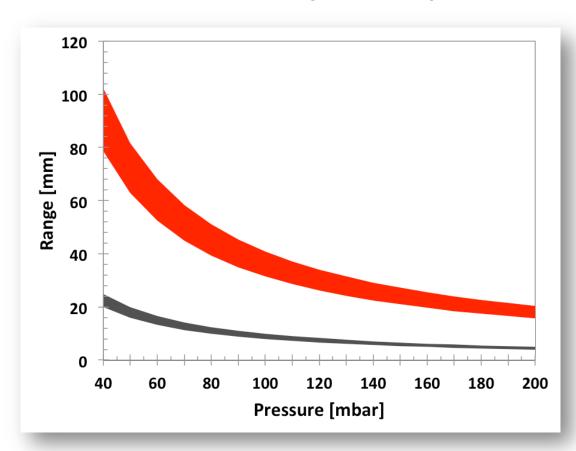

- Universe (by mass): H 74%, He 24%, O 0.85%, C 0.39% + others (<1%)
- **Human body** (by mass): **O 65%, C 18%**, H 10%, N 3% + others (4%)

Stellar Nucleosynthesis

- Problem of Coulomb barrier in direct α-capture (α,γ)
 measurements:
 - in the interesting energy regime the cross sections are very small
 - exp. data need to be extrapolated to the Gamow peak
 - significant exp. background



Motivation for ELITPC @ ELI-NP


Studies of $^{12}C(\alpha,\gamma)^{16}O$:

- Present experimental data start from E_{CM} ~ 1 MeV
- Goal: measure astrophysical S-factor near the Gamow peak in red giants
 - $E_{CM} \sim E_G = 300 \text{ keV}$
 - $S_{E1}(300)$ and $S_{E2}(300)$ corresponding to p and d-waves
 - reduce uncertainty on S-factor from 40-80% to 10%

ELITPC – track lengths

- Studies of ¹²C(α,γ)¹⁶O:
 - SRIM-simulated ranges of charged particles as a function of CO₂ pressure

Red band : α particles Grey band : ¹²C ions

Bands correspond to:

- E_y range: 8.26 8.67 MeV
- 90° emission angles w.r.t.
 γ-beam axis