Simone Valdré

Grand Accélérateur National d'Ions Lourds

for the FAZIA collaboration

FAZIA electronics: from detectors to acquisition

GDS topical meeting LNL, January 26th, 2017

Introduction ●00	FAZIA modular design 00	Front-end electronics	Event building electronics	Acquisition	Conclusions 000
Outloo	k				

- Brief history of FAZIA
- FAZIA modular design
- Front-end electronics and block cards.
- Event building electronics
- Coupling with other detectors
- Acquisition and slow control
- Summary and Conclusions

Introduction 0●0	FAZIA modular design 00	Front-end electronics	Event building electronics	Acquisition	Conclusions
Fazia p	project				

The aim of the project

- Build a 4π array for charged particles.
- High granularity and good energy resolution.
- A and Z identification over the widest possible range.

Introduction 0●0	FAZIA modular design 00	Front-end electronics	Event building electronics	Acquisition	Conclusions
Fazia p	project				

The aim of the project

- Build a 4π array for charged particles.
- High granularity and good energy resolution.
- A and Z identification over the widest possible range.

History of FAZIA

2007-16 **Prototypal telescope** tests were performed to design and build **FAZIA blocks**

2014 1 block (16 telescopes) successfully tested at *Laboratori Nazionali del Sud* (LNS) of INFN

2015-16 4 FAZIA blocks measured at LNS for two **physics-centered** experimental campaigns

Introduction 0●0	FAZIA modular design 00	Front-end electronics	Event building electronics	Acquisition	Conclusions
Fazia p	project				

The aim of the project

- Build a 4π array for charged particles.
- High granularity and good energy resolution.
- A and Z identification over the widest possible range.

Present and future of FAZIA

- 2017 Two more **physics-centered** experiments are planned at LNS
- 2018 12 FAZIA blocks will be brought to GANIL and coupled to INDRA
- 20?? Adapted FAZIA blocks may be coupled with a gas detector to measure with **SPES beams**

Introduction 00●	FAZIA modular design	Front-end electronics	Event building electronics	Acquisition	Conclusions
Fazia p	roject				

Publications

- S. Barlini et al, Nucl. Instr. and Meth. A 600 (644-650), 2009
- L. Bardelli et al, Nucl. Instr. and Meth. A 654 (272-278), 2011
- S. Carboni et al, Nucl. Instr. and Meth. A 664 (251-263), 2012
- N. Le Neindre et al, Nucl. Instr. and Meth. A 701 (145-152), 2013
- S. Barlini et al, Nucl. Instr. and Meth. A 707 (89-98), 2013
- S. Barlini et al, Phys. Rev. C 87 (054607), 2013
- S. Piantelli et al, Phys. Rev. C 88 (064607), 2013
- R. Bougault et al, Eur. Phys. Jour. A 50 (47), 2014
- G. Pasquali et al, Eur. Phys. Jour. A 50 (86), 2014
- G. Pastore et al, submitted to NIM A, 2016

Introduction 000	FAZIA modular design ●○	Front-end electronics	Event building electronics	Acquisition	Conclusions 000
The FA	ZIA telescop	be			

The telescope stages

- 300 µm reverse-mounted Si detector;
- ② 500 µm reverse-mounted Si detector;
- 10 cm Csl(Tl) cristal read by a photodiode.

To achieve the best possible energy resolution and A and Z identification Si detectors come from a nTD ingot cut at random angle to avoid channeling effects.

Introduction 000	FAZIA modular design ●○	Front-end electronics	Event building electronics	Acquisition	Conclusions 000
The FA	ZIA telescop	be			

The telescope stages

- 300 µm reverse-mounted Si detector;
- ❷ 500 µm reverse-mounted Si detector;
- I0 cm Csl(Tl) cristal read by a photodiode.

To achieve the best possible energy resolution and A and Z identification Si detectors come from a nTD ingot cut at random angle to avoid channeling effects.

Introduction 000	FAZIA modular design ●○	Front-end electronics	Event building electronics	Acquisition	Conclusions 000
The FA	ZIA telescop	be			

The telescope stages

- 300 µm reverse-mounted Si detector;
- ② 500 µm reverse-mounted Si detector;
- 10 cm Csl(Tl) cristal read by a photodiode.

To achieve the best possible energy resolution and A and Z identification Si detectors come from a nTD ingot cut at random angle to avoid channeling effects.

	Introduction 000	FAZIA modular design ○●	Front-end electronics	Event building electronics	Acquisition 00	Conclusions 000
I NE FAZIA DIOCK	The FA	ZIA block				

2 telescopes are connected to a FEE card.

Introduction 000	FAZIA modular design ○●	Front-end electronics	Event building electronics	Acquisition	Conclusions
The FA	71A block				

8 FEE cards are connected to a block card via a back plane.

Introduction 000	FAZIA modular design ○●	Front-end electronics	Event building electronics	Acquisition	Conclusions
The FA	ZIA block				

up to 36 block cards are connected to a regional board via a full duplex 3 Gb/s optical link

Block is mounted on a copper base in which water flows to provide cooling

Europe -	السمينية والمرام المسر				
000	00	0000	0000	00	000
Introduction	FAZIA modular design	Front-end electronics	Event building electronics	Acquisition	Conclusions

FEE card

- Designed at IPN, Orsay
- 2 FAZIA telescopes per card
- Programmable logic performs on-line analysis of sampled data
 - VHDL code has been mainly written by P. Edelbruck
- FEE supplies also the Si detectors bias voltages

- .	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Introduction 000	FAZIA modular design	Front-end electronics	Event building electronics	Acquisition 00	Conclusions 000

Detector connectors

- Detectors are connected using kapton cables
- Silicon side kapton connection:
 - ultra-sonic μ bonding
 - conductive glue

E	and a base of the second				
		0000			
Introduction	FAZIA modular design	Front-end electronics	Event building electronics	Acquisition	Conclusions

Analog chain (for each telescope)

- 3 fixed gain charge pre-amplifiers (8 V out dynamic range)
- High range signals are **attenuated** by a factor 4
- Low range signals are **amplified** by a factor 4
- Current signal by analog differentiation of charge signals

Introduction	FAZIA modular design	Front-end electronics	Event building electronics	Acquisition	Conclusions
		0000			

	г .	1 1 1 1				
Introduction EAZIA modular design Front-end electronics Event building electronics Acquisition (onclusic	Introduction 000	FAZIA modular design	Front-end electronics ●○○○	Event building electronics	OO	Conclusions 000

6 sampling ADCs per telescope

Si 1	14 bit, 100 MHz 14 bit, 250 MHz 14 bit, 250 MHz	4 GeV full-scale charge signal 250 MeV full-scale charge signal current signal	QH1 QL1 I1
Si 2	14 bit, 100 MHz 14 bit, 250 MHz	4 GeV full-scale charge signal current signal	Q2 12
CsI(TI)	14 bit, 100 MHz	4 GeV Si-equiv. f.s. charge signal	Q3

_					000
Introduction	FAZIA modular design	Front-end electronics	Event building electronics	Acquisition	Conclusions

Xilinx Virtex-5 FPGAs

- Each FPGA process signals from one telescope
 - signals stored in circular buffers (up to 8192 samples)
- On-board real-time trapezoidal shaping and PSA
 - fast shaped signals to leading-edge discriminators
 - maximum of slow shaped signals to acquisition
 - no pole-zero correction

Introduction	FAZIA modular design	Front-end electronics	Event building electronics	Acquisition	Conclusions
		0000			

Introduction	FAZIA modular design	Front-end electronics	Event building electronics	Acquisition	Conclusions
		0000			
Eront /	and alactronic	~~			

HV generation

- DC/DC converters produce the Si detectors bias voltages:
 - 0-300 V for Si1 (140 V depletion voltage)
 - 0-400 V for Si2 (290 V depletion voltage)
- CsI(TI) photodiode bias voltage from the Power Supply card:
 - optocoupler switch on FEE card.

F	بليستعمام المس				
		0000			
Introduction	FAZIA modular design	Front-end electronics	Event building electronics	Acquisition	Conclusions

Back plane connector

- Power supply and CsI(TI) HV from power supply card
- Equalized 25 MHz clock distribution between FEE cards
- Star connection between FEE cards and block card:
 - FEE to BC: 2x400 Mb/s links (⇒ 800 Mb/s)
 - BC to FEE: 1x400 Mb/s link
- Slow control communication

Half br	idge and no	ver supply			
Introduction	FAZIA modular design	Front-end electronics	Event building electronics	Acquisition	Conclusions
000	00	○●○○		00	000

Half Bridge

- Designed at INFN Napoli
- High power voltage conversion from 48 V DC input:
 - 22 V (14 A) DC
 - 5.5 V (70 A) DC

Power Supply

- Designed at INFN Napoli
- $\bullet\,$ Converts 22 V to 13 V, -9 V, ±5 V and CsI(TI) HV
- PIC monitors produced voltages together with 5.5 V from h-b
 - power on/power off
 - under/over voltage protection
 - voltage/current limits

Introduction	FAZIA modular design	Front-end electronics	Event building electronics	Acquisition	Conclusions
000	00	00●0		00	000
Block	Card				

Block card

- Designed at INFN Napoli
- Takes data from FEE cards via the back plane and builds up part of the event record
 - event counter consistency check
- Features a 3 Gb/s optical link to regional board
 - 16-bit 8b/10b GTX transceiver
 - fixed latency transmission protocol
 - every 40 ns trigger multiplicity information is transmitted
- 25 MHz clock from fibre-recovered clock
 - PLL for jitter cleaning

courtesy of A. Boiano, INFN - Napoli

Introduction 000	FAZIA modular design 00	Front-end electronics ○○○●	Event building electronics	Acquisition 00	Conclusions
Cross	wneronizatio	n			

Sampling clock syncronization

- Fixed latency transmission^a:
 - all ADC clocks have the same phase ($\sim 20\, \rm ps$ skew)
 - digitized signals don't have the 1 clock indetermination typical of asyncronous systems

^aR. Giordano et al, IEEE Trans. on Nucl. Science 58 (194), 2011

courtesy of A. Boiano, INFN - Napoli

000	00		OOOO	00	000					
Cross	Cross syncronization									

Sampling clock syncronization

- Fixed latency transmission^a:
 - all ADC clocks have the same phase ($\sim 20\, \rm ps$ skew)
 - digitized signals don't have the 1 clock indetermination typical of asyncronous systems
- Common periodic reference signal sampling^b:
 - additional cross-syncronization technique
 - ${\, \bullet \,}$ improves time resolution up to $\sim 10\, {\rm ps}$

^aR. Giordano *et al*, IEEE Trans. on Nucl. Science 58 (194), 2011

^bL. Bardelli et al, Nucl. Instr. and Meth. A 572 (882), 2007

Introduction 000	FAZIA modular design 00	Front-end electronics	Event building electronics	Acquisition	Conclusions 000
Regiona	al board				

Regional Board

- Designed at Jagiellonian University, Krakow
- Features a Xilinx Virtex-5 FPGA
 - VHDL code has been written mainly at INFN Napoli
- 36x 3 Gb/s bi-directional optical links
 - to/from FAZIA blocks
 - fixed latency protocol
- 2x 1 Gb/s optical ethernet links (1000Base-SX)
 - $\bullet\,$ now only 1 is used \Rightarrow room for transmission speed increase
 - UDP protocol for low-latency transfer
- Possibility to connect GANIL CENTRUM module

Introduction 000	FAZIA modular design 00	Front-end electronics	Event building electronics	Acquisition	Conclusions 000
Regiona	al board				

Introduction 000	FAZIA modular design 00	Front-end electronics	Event building electronics •०००	Acquisition	Conclusions
Regiona	al board				

Regional Board tasks

- Trigger board:
 - multiple majority logic for trigger validation
 - trigger scaling by a settable factor
 - master/slave trigger operation (for coupling)
- Event building from data coming from all the blocks
 - it may add the CENTRUM timestamp to each event
- Transmission of acquired data to servers
 - maximum speed achieved: $\sim 80\,\text{MB/s}~(\sim 640\,\text{Mb/s})$
- Slow control management of all the electronics
 - data transmission and slow control use the same optical fibre

Introduction 000	FAZIA modular design 00	Front-end electronics	Event building electronics	Acquisition	Conclusions 000
Couplir	ng with other	apparatuse	S		

FAZIA modularity makes coupling easy:

- CENTRUM¹ modules could be used for coupling
- FAZIA—INDRA coupling is in progress!

Introduction 000	FAZIA modular design 00	Front-end electronics	Event building electronics	Acquisition	Conclusions 000
Couplin	ng with other	r apparatuse	S		

FAZIA modularity makes coupling easy:

- CENTRUM¹ modules could be used for coupling
- FAZIA—INDRA coupling is in progress!

Trigger

- Asynchronous mode
- Master/slave (common dead time)

¹developed at GANIL, Caen

Introduction 000	FAZIA modular design 00	Front-end electronics	Event building electronics	Acquisition	Conclusions 000
Couplir	ng with other	r apparatuse	S		

FAZIA modularity makes coupling easy:

- CENTRUM¹ modules could be used for coupling
- FAZIA—INDRA coupling is in progress!

Trigger

- Asynchronous mode
- Master/slave (common dead time)

CENTRUM operation

- Validation received from one or both detectors
- Timestamp given to both detectors

Introduction 000	FAZIA modular design 00	Front-end electronics	Event building electronics	Acquisition	Conclusions
Couplin	g with other	apparatuse	S		

FAZIA modularity makes coupling easy:

- CENTRUM¹ modules could be used for coupling
- FAZIA—INDRA coupling is in progress!
- data merging using NARVAL²

Trigger

- Asynchronous mode
- Master/slave (common dead time)

CENTRUM operation

- Validation received from one or both detectors
- Timestamp given to both detectors

Common dead time coupling

Introduction oo FAZIA modular design oo Front-end electronics Event building electronics oo oo conclusions oo oo

Common dead time coupling

_					
Introduction 000	FAZIA modular design	Front-end electronics	Event building electronics	Acquisition	Conclusions

Data merging with NARVAL

(Not yet tested...)

Acquisi	tion and mo	nitoring			
Introduction 000	FAZIA modular design 00	Front-end electronics	Event building electronics	Acquisition ●○	Conclusions 000

Acquisition system

- Developed at INFN Napoli
- Finite State Machine logic
- Multi-thread and multi-machine
 - controller sends machine IP addresses to regional board
 - regional board stores IP addresses inside a list
 - each event is sent to a different PC of the list sequentially
- Data merged and written to a data server.
- Monitoring software receives live data from the acquisition
- Data transfer between machines via ZeroMQ protocol
- NARVAL frame encapsulation implemented

Introduction	FAZIA modular design	Front-end electronics	Event building electronics	Acquisition	Conclusions
				0	

Acquisition and monitoring

courtesy of G. Tortone, INFN - Napoli

Introduction 000	FAZIA modular design 00	Front-end electronics	Event building electronics	Acquisition ○●	Conclusions 000
Slow C	ontrol				

Slow Control is used to read and/or change:

- Trigger operation mode (master/slave) for coupling
- Detector bias voltages and leakage currents
- Trigger and acquisition thresholds
- Number of acquired samples of signal and pre-trigger length
- Trapezoidal shaper characteristics (rise time and flat top)
- Many other FEE card, block card, power supply and regional board parameters

Introduction 000	FAZIA modular design 00	Front-end electronics	Event building electronics	Acquisition ○●	Conclusions 000
Slow C	ontrol				

Slow Control operation:

- Any PC can send Slow Control commands as UDP packets
- Request for regional board:
 - RB executes the request and replies to PC
- Request for block card, power supply of FEE card:
 - RB forwards the request to all the blocks
 - RB waits for the answer, then forwards it to the PC
- Regional Board replies to the same PC that sent the request
- Fazia GUI^a is a graphical tool to send Slow Control commands

^adeveloped at GANIL and INFN – Firenze

Introduction 000	FAZIA modular design	Front-end electronics	Event building electronics	Acquisition ○●	Conclusions 000	
Slow Control						

Slow Control

Introduction 000	FAZIA modular design 00	Front-end electronics	Event building electronics	Acquisition	Conclusions ●00
Summa	ry and concl	usions			

- FAZIA implements **compact electronics** that permit to do on-line analysis just next the detectors
 - minimization of signal distortion
 - data reduction at the source
- Very fast and low latency data transfer
- Possibility to perform precise **time measurements** thanks to block cross-syncronization
 - E vs ToF to identify particles **stopped** in the first Si-layer
 - possibility to measure with low-energy beams
- Possibility to couple FAZIA with other apparatuses via CENTRUM and NARVAL
- Despite its compact design, energy resolution and quality of Z and A identification of FAZIA block is **comparable or better** than prototypal FAZIA telescopes.

identifi	cation canab	ilities			
Introduction 000	FAZIA modular design 00	Front-end electronics	Event building electronics	Acquisition 00	Conclusions 0●0

Si1-Si2

FAZIA modular design Event building electronics Introduction Conclusions 000

FAZIA collaboration

Thanks for your attention