

PROBING THE STRUCTURE OF EXOTIC NUCLEI WITH PROTON AND ANTIPROTON TARGETS

A.Corsi CEA Saclay

GDS Topical Meeting, Legnaro, 25-27th January 2017

 \diamond Challenges in the study of exotic nuclei

- ♦ A proton target: MINOS
 - Method
 - Description
 - Results at RIKEN
 - Perspectives
- ♦ An antiproton target: PUMA
 - Method
 - Description
 - Perspectives

Cea Evolution of shell structure

- Energy spectrum sensitive to shell structure
- 2⁺ energy most accessible observable
- High 2⁺ energy <=> magic numbers

- Magic numbers (may) change far from stability e.g. N=28
- Possible diving mechanism: Central force T. Otsuka *et al.*, PRL 87 (2001) Tensor force T. Otsuka *et al.*, PRL 104 (2010) 3 body force G. Hagen *et al.*, PRC 80 (2009)

Certain Development of halos and thick neutron skins

Skins from matter and charge radius:

- Electron / hadron elastic scattering
- Coherent pion photoproduction
- Parity violation in electron scattering

Halo measured in light neutron-rich nuclei

- No measurement of halo beyond Mg
- Recent hints of proton halo

Relevant to:

- Benchmark symmetry term of EOS
- Study nucleon-nucleon correlations in dilute matter

Current limitations:

- No data on skins for unstable nuclei
- Difficulty to measure shape/tail of density distribution

Neutron excess (N-Z)/A

X. Vinas et al., Eur. Phys. J A 50, 27 (2014)

\diamond Challenges in the study of exotic nuclei

♦ A proton target: MINOS

- Method
- Description
- Results at RIKEN
- Perspectives
- ♦ An antiproton target: PUMA
 - Method
 - Description
 - Perspectives

Quasi Free Scattering reactions in inverse kinematics

- QFS is a clean experimental probe
- QFS in inverse kinematics compatible with thick target => increase luminosity
- need vertex reconstruction for: doppler correction (gamma spectroscopy) energy loss correction (invariant mass spectroscopy)

	cleanliness	feasibility
(e,e'p)	++	
transfer	+	-
HI knockout	-	+
QFS	+	+

MINOS : Magic Numbers Off Stability

Hosted by Spin-Isospin Laboratory of RIKEN Nishina Center

MINOS : Magic Numbers Off Stability

Efficiency: 95% in (p,2p) & resolution on vertex: 5 mm (FWHM)

The MINOS device: LH₂ target

- Cryogenic target (20 K)
- Mylar cell: 200 microns, 38 mm entrance window
- 100-150 mm length, **≈ 1 g/cm² H**
- Eloss=65 MeV/u for 250 MeV/u ⁷⁸Ni
- Surrounding space free for detection

DE LA RECHERCHE À L'INDUSTRI

The MINOS device: field cage

- 30-cm long drift space
- ~400 1-mm strips connected by 800 resistors
- Compact, low-material budget field cage
- Ar (82%) + CF₄ (15%) + C₄H₁₀ (3%) gas at 1 ATM Drift velocity ~4.5 cm/µs at 180 V/cm Transverse diffusion < 200 µm/√cm

22 The MINOS device: Micromegas detector

Micromegas detector

G. Charpak, I. Giomataris, et al., NIMA 376, 29 (1996).

• 4000 pads of 2 x 2 mm²

22 The MINOS device: Micromegas detector

Micromegas detector

G. Charpak, I. Giomataris, et al., NIMA 376, 29 (1996).

• 4000 pads of 2 x 2 mm²

• Noise filtering+tracking algorithm (Hough transform)

DE LA RECHERCHE À L'INDUSTR

GET: Generic Electronics for TPC

Spokesperson: E.C.Pollacco CEA/IRFU, CENBG, GANIL, NSCL-MSU, RIKEN collaboration

The MINOS device: electronics

DALI2-MINOS setup at F8

DALI2

- 186 Nal(TI) crystals
- ϵ =20% and Δ E/E=10% @ 1 MeV and β =0.6

ZeroDegree Spectrometer

- Momentum acceptance: ±3%
- High resolution: P/DP≈6000

Shell Evolution and Search for Two-plus Energies At the RIBF (SEASTAR)

Spokespersons: P. Doornenbal (RIKEN), A. Obertelli (CEA)

May 2014 SEASTAR1 May 2015 SEASTAR2

To come: SEASTAR3 (see next)

Follow up:

- Study of N=20 for proton rich nuclei (A.Gillibert, CEA)
- Spectroscopy of ¹⁰⁰Sn (J.Lee, HKU, A.Corsi, CEA and K.Wimmer, Tokyo Univ.)

Proposal for a Scientific Program promoted by H.Sakurai (RNC, Univ. of Tokyo) and T.Uesaka (RNC)

DE LA RECHERCHE À L'INDUSTR

SEASTAR1: Collectivity beyond N=40

MOTIVATION

- N=40 and N=50 below Ni isotopes
- Island of collectivity?

RESULT:

- Extension of N=40 island of collectivity towards N=50
- Interplay of pairing and quadrupole correlations

C.Santamaria, C. Louchart *et al.*, PRL 115 (2015) SM calculations from F.Nowacki, IPHC Strasbourg

Cea SEASTAR2: spectroscopy of ¹¹⁰Zr

MOTIVATIONS:

- **Z=40 and N=70 predicted magic** for tetrahedral symmetry and harmonic oscillator
- Deformed ¹¹⁰Zr from beyond-mean field

RESULTS:

- Level scheme not compatible with tetrahedral symmetry (0⁺, 3⁻, 4⁺)
- Lowest 2⁺ energy along N=70 chain, and very similar to ¹⁰⁸Zr
 well-deformed nucleus

N.Paul et al., Phys.Rev.Lett in press

Ceal Particle spectroscopy with MINOS at SAMURAI

Dineutron correlations in Borromean halo nuclei ¹¹Li, ¹⁴Be, ¹⁵B • Missing+Invariant mass measurement: ${}^{11}Li(p,pn){}^{10}Li \rightarrow {}^{9}Li+n$ Dipole magnet **FDC WINDS NEBULA MINOS+DALI** a d d ₩Q-u--QłĞ**u** (\odot FDCL þ -**QFS** kinematics **RP FKE** [MeV] Proton Scattering angle [deg.]

1317

Cera Particle spectroscopy with MINOS at SAMURAI

Performed experiments:

- Oct 2014: Dineutron correlation in borromean halo nuclei ¹¹Li, ¹⁴Be, ¹⁵B (A.Corsi, CEA and Y.Kubota, RIKEN)
- Oct 2015: Invariant mass of ²⁸O (Y.Kondo, Tokyo Tech.)

To come:

- SEASTAR3: spectroscopy of ⁵²Ar, ⁵⁴Ca, ⁶²Ti, etc. (A.Obertelli, CEA and P.Doornenbal, RIKEN)
- Search for superheavy 7H and its tetraneutron decay (Z.Yang, RIKEN and M.Marguez, LPC Caen)
- Investigation of the 4n system at SAMURAI by (p,pα) quasi-free scattering (S.Paschalis, Surrey Univ.)
- Search for ²²C (2⁺), ²¹B, ²³C, ²⁵N: structure at and beyond the N=16 sub-shell closure (N.Orr, LPC Caen)
- Invariant Mass Measurement of ³⁹Mg at SAMURAI (H.Crawford, LBNL)

DE LA RECHERCHE À L'INDUSTR

Cez

Perspectives: high-resolution gamma spectroscopy

Perspectives: QFS studies at GSI/R³B

Unique features at GSI:

- High beam energy => reduce beam re-interaction, proton straggling 18 Tm corresponding to 1.9 GeV/u for ¹⁶O
- R³B detection system => kinematically complete measurement

Two possible setups at secondary target:

 \diamond Challenges in the study of exotic nuclei

- ♦ A proton target: MINOS
 - Method
 - Description
 - Results at RIKEN
 - Perspectives
- ♦ An antiproton target: PUMA
 - Method
 - Description
 - Perspectives

CO2 The concept: antiproton annihilation

Annihilation with both protons and neutrons

Features:

- High cross section (Mbarns) at low relative energy (100 eV)
- Net electric charge conservation

 -1: neutron annihilation
 0: proton annihilation
- Sensitive to neutron-proton ratio at surface

M. Wada, Y. Yamazaki, Nucl. Instr. Meth. B 214 (2004)

Bringing the antiprotons from AD (CERN) to ISOLDE (and other RIB facilities)

First experiment at ISOLDE foreseen in 2022

Cea The PUMA device

Technical challenges:

- Store a large number of antiproton (<10⁸) for a long time
 ⇒ sealed cryogenic (4 K) trap for extreme vacuum (10⁻¹⁶ mbar)
- Transport ions through a nanometric window
- Reconstruct net charge of annihilation via pion detection

Cea PUMA detection system

TPC (π +/ π - identification, vertex tracking)

Upgrade: gamma array for spectroscopy after annihilation

OF LA RECHERCHE À L'INDUSTRI

Cea PUMA physics program

♦ MINOS device successfully operated at RIKEN

- 4 experiments performed since 2014
- More experiments to come
- Perspectives:
 - 1. high-resolution gamma spectroscopy
 - 2. exclusive QFS reactions at GSI/R³B

- ♦ Construction of new PUMA device beginning
 - Technical challenges
 - Perspectives:
 - 1. Measure neutrons skins and halo at ISOLDE (>2022)
 - 2. Spectroscopy of exotic nuclei at S³/DESIR (>2025)

...you are welcomed to join!

MINOS development team

S. Anvar, L. Audirac, G. Authelet, H. Baba, B. Bruyneel, D. Calvet, F. Chateau, A. Corsi, A. Delbart, P. Doornenbal, J.-M. Gheller, A. Giganon, T. Isobe, Y. Kubota, C. Lahonde-Hamdoun, D. Leboeuf, D. Loiseau, M. Matsushita, A. Mohamed, J.-Ph. Mols, T. Motobayashi, M. Nishimura, A. Obertelli, S. Ota, H. Otsu, C. Péron, A. Peyaud, E.C. Pollacco, G. Prono, J.-Y. Rousse, H. Sakurai, C. Santamaria, M. Sasano, R. Taniuchi, S. Takeuchi, T. Uesaka, Y. Yanagisawa, K. Yoneda

Physics collaborations

Di-neutron correlations Uesaka, Sasano, Zenihiro, Yoneda, Sato, Otsu, Shimizu, Baba, Isobe, Sako, Stul, Panin (RNC), **Kubota**, Dozono, Ota, Kobayashi M., Kiyokawa (CNS), **Corsi**, Obertelli, Santamaria, Pollacco, Lapoux, Gillibert, Calvet, Delbart, Gheller, Authelet, Roussé (CEA), Kobayashi N., Koyama, Miyazaki (Tokyo Univ.), Kobayashi T., Hasegawa, Sumikama (Tohoku Univ.), Nakamura, Kondo, Togano, Shikata, Tsubota, Saito, Ozaki (Tokyo Tech), Yasuda, Sakaguchi, Shindo, Tabata, Ohkura, Nishio (Kyushu Univ.), Nakatsuka (Kyoto Univ.),Yukie, Kawakami, Kanaya (Miyazaki Univ.), Marques, Gibelin, Orr (LPC Caen), Flavigny (IPNO), Yang, Feng (Peking Univ.), Caesar, Paschalis (TUD), Reichert (TUM), Kim (Ehwa Womans University)

SEASTAR N. Alamanos, G. de Angelis, N. Aoi, H. Baba, C. Barbieri, C. Bertulani, A. Corsi, F. Delaunay, Z. Dombradi, **P. Doornenbal**, T. Duguet, S. Franchoo, J. Gibelin, A. Gillibert, S. Go, M. Gorska, A. Gottardo, S. Grévy, J.D. Holt, E. Ideguchi, T. Isobe, A. Jungclaus, N. Kobayashi, T. Kobayashi, Y. Kondo, W. Korten, Y. Kubota, I. Kuti, V. Lapoux, S. Leblond, J. Lee, S. Lenzi, H. Liu, G. Lorusso, C. Louchart, R. Lozeva, F.M. Marques, I. Matea, K. Matsui, Y. Matsuda, M. Matsushita, J. Menendez, D. Mengoni, S. Michimasa, T. Miyazaki, S. Momiyama, P. Morfouace, T. Motobayashi, T. nakamura, D. Napoli, F. Naqvi, M. Niikura, **A. Obertelli**, N. Orr, S. Ota, H. Otsu, T. Otsuka, N. Pietralla, Z. Podolyak, E.C. Pollacco, G. Potel, G. Randisi, F. Recchia, E. Sahin, H. Sakurai, C. Santamaria, M. Sasano, A. Schwenk, Y. Shiga, Y. Shimuzu, S. Shimoura, J. Simonis, P.A. Soderstrom, S. Sohler, V. Soma, I. Stefan, D. Steppenbeck, T. Sumikama, H. Suzuki, M. Tanaka, R. Taniuchi, K.N. Tuan, T. Uesaka, J. Valiente Dobon, Zs. Vajta, D. Verney, H. Wang, V. Werner, Zh. Xu, R. Yokoyama, K. Yoneda

PUMA development team

D.Calvet, A.Corsi, A.Delbart, J.M.Gheller, P.Legou, A.Obertelli, N.Paul, J.Y. Roussé, (CEA Saclay), F.Flavigy (IPNO), D.Lunney (CSNSM), S.Naimi, T.Uesaka (RIKEN),....

DE LA RECHERCHE À L'INDUSTRIE

OF LA RECHERCHE À L'INDUSTR

07

TRACKING ALGORITHM

DE LA RECHERCHE À L'INDUSTR

Energy resolution in in-flight gamma spectroscopy

$$E = E_{lab} \frac{1 - \beta \cos(\theta)}{\sqrt{1 - \beta^2}}$$

Status: spectroscopy of ⁵⁴Ca at RIBF

Status: spectroscopy of ⁵⁴Ca at RIBF

Cea SEASTAR1: spectroscopy of ⁷⁸Ni

R.Taniuchi et al., in preparation (2017); Collaboration with T.Otsuka (Tokyo Univ.), A. Schwenk (TU Darmstadt)

DE LA RECHERCHE À L'INDUSTR

SEASTAR 3/3: Spectroscopy of ⁵²Ar

Does N=34 persist south of ⁵⁴Ca (as N=32)?

Rosenbush et al., PRL 114, 202501 (2015)

Hough transform: pattern extraction technique

- ✓ Fast algorithm
- ✓ Pattern recognition & track fitting

OF LA RECHERCHE À L'INDUSTI

Ce2 How to determine net electric charge

Pion production: a) pbar + p M=2 $\pi^+ + \pi^- + 3\pi^0$ (23.3%) $2\pi^+ + 2\pi^- + \pi^0$ (19.6%) ounts / bin $2\pi^+ + 2\pi^- + 2\pi^0$ (16.6%) pbar + n $2\pi^{-} + \pi^{+} + \Pi\pi^{0}$ (59.7%) $3\pi^{-} + 2\pi^{+} + \Pi\pi^{0}$ (23.4%) 0.20 (17%) $2\pi^{-} + \pi^{+} + \pi^{0}$ c) M=2Pions scattering, absorption Counts / bin λ^+ : π^0 +N $\rightarrow \pi^+$ +N $\lambda^{-}: \pi^{0} + N \rightarrow \pi^{-} + N$ ω^+ : $\pi^+ + N \rightarrow \pi^- + N$ $\omega^{-}: \pi^{-} + N \rightarrow \pi^{+} + N$

Wada and Yamazaki, unpublished

Cerron correlation in Borromean halo nuclei

- QFS on Hydrogen to minimize Final State Interaction (2)
- Kinematically complete measurement
- Core excitation via γ detection
- Observable sensitive to dineutron: θ_{Y}

→ Need high statistics : RIBF + MINOS thick target = x 100 in statistics

Spokespersons: Y.Kubota (CNS, RNC) and A.Corsi (CEA Saclay)

Cea Results from ¹¹Li(p,pn) reaction

Dineutron correlation in ¹¹Li

- Θ_v distribution signals dineutron correlation
- To be quantified via comparison with theoretical model

Collaboration with Y.Kikuchi et al., PTEP 216 (2016)

Plots: courtesy of Y.Kubota, RNC