Black hole mergers and gravitational waves

Sebastiano Bernuzzi (Università di Parma) and Paolo Pani (Roma Sapienza and IST Lisbon)

Abstract

The broad scope of these lectures is to introduce the basic elements which are necessary to understand the GW signals from a BH binary merger recently-observed by LIGO, and to provide the basis of some state-of-the-art applications in this rapidly-growing field.

Content:

- 1. A GW physics primer.
- 2. Introduction to the post-Newtonian formalism. The case of circular inspiral.
- 3. Black-hole perturbations and quasinormal modes (QNMs)
- 4. GWs from a radial plunge of a test particle into a black hole: QNM ringing
- 5. Black-hole spectroscopy: tests of gravity and of near-horizon physics
- 6. Numerical Relativity and Effective-One-Body (EOB) approach

References

- 1. M. Maggiore, Gravitational Waves: Volume 1: Theory and Experiments
- 2. Berti-Cardoso-Starinets, arXiv:0905.2975
- 3. T Regge J A Wheeler, Phys. Rev. 108, 1063 1957
- 4. Zerilli, Phys.Rev. D2 (1970) 2141-2160
- 5. M Davis, R Ruffini, and J Tiomno Phys. Rev. D 5, 2932 1972
- 6. Buonanno, Damour, gr-qc/9811091
- 7. Berti et al., arXiv:1501.07274
- 8. M.Alcubierre, Introduction to 3+1 Numerical Relativity