
G A P Cirrone, PhD - INFN-LNS (Italy) - pablo.cirrone@lns.infn.it

The Sensitive Detector  
A Native scoring

Geant4 School  
at the XIV Seminar on software for nuclear,  

subnuclear and applied Physics  
June 4th - 9th, 2017

1

G A P Cirrone, PhD - INFN-LNS (Italy) - pablo.cirrone@lns.infn.it

Sensitive Detector I
2

The HIT concept  
A hit is a snapshot of the physical interaction of a track in the sensitive
region of a detector. In it you can store information associated with a G4Step
object.  
This information can be: 
 
the position and time of the step, 
the momentum and energy of the track, 
the energy deposition of the step, 
geometrical information,

The Sensitive Detector concept  
G4VSensitiveDetector is an abstract base class which represents a
detector. The principal mandate of a sensitive detector is the construction of
hit objects using information from steps along a particle track. 
 
The ProcessHits() method of G4VSensitiveDetector performs this
task using G4Step objects as input.

G A P Cirrone, PhD - INFN-LNS (Italy) - pablo.cirrone@lns.infn.it

Sensitive Detector II
3

G4VSensitiveDetector has three major virtual methods

ProcessHits()  
is invoked by G4SteppingManager when a step is composed in the
G4LogicalVolume which has the pointer to this sensitive detector.  
The first argument of this method is a G4Step object of the current step.

Initialize()  
This method is invoked at the beginning of each event.  
The argument of this method is an object of the G4HCofThisEvent class:  
Hit collections, where hits produced in this particular event are stored.

EndOfEvent()  
This method is invoked at the end of each event.  
The argument of this method is the same object as the previous method.

G A P Cirrone, PhD - INFN-LNS (Italy) - pablo.cirrone@lns.infn.it

Sensitive Detector III
4

A logical volume becomes sensitive if it has a pointer to a sensitive
detector (G4VSensitiveDetector)

A sensitive detector can be instantiated several times, where the
instances are assigned to different logical volumes

The SD objects must have unique detector name

A logical volume can only have one SD object attached, but
the detector can have many functionalities

Two possibilities to make use of the SD functionality:

Create your own sensitive detector (using class inheritance)
==> highly customisable

Use the geant4 built-in tools: the primitive scorers

G A P Cirrone, PhD - INFN-LNS (Italy) - pablo.cirrone@lns.infn.it

Make ‘sensitive’ a logical volume
Create an instance of a sensitive detector and register it to the
SensitiveDetector manager

Assign the pointer of your SD to the logical volume of your detector
geometry

Must be done in the ConstructSDandField() of the User
geometry class

5

G4VSensitiveDetector* mySensitive = new mySensitiveDetector(SDname = “/MyDetector”);

G4VSensitiveDetector* mySensitive
= new MySensitiveDetector(SDname="/MyDetector");

boxLogical->SetSensitiveDetector(mySensitive);
(or)
SetSensitiveDetector("LVname",mySensitive);

Create instance

Assign to logical
volume
Assign to logical
volume (alternative)

Native Geant4 scoring

6

G A P Cirrone, PhD - INFN-LNS (Italy) - pablo.cirrone@lns.infn.it

Extract useful information

Geant4 provides a numbers of primitive scorers, each of one
accumulating one physics quantity (e.g. total dose) for an
event

This is an alternative to the customised sensitive detectors
(see later), which can be used with full flexibility to gain a
complete control

It is convenient to use primitive scorers instead of the
user-defined sensitive detectors when:

you are not interested in recording each individual step,
but into accumulate physical quantities in an event or run

you have not too many scores

7

G A P Cirrone, PhD - INFN-LNS (Italy) - pablo.cirrone@lns.infn.it

The G4MultifunctionalDetector

G4MultifunctionalDetector is a concrete class derived
by G4VSensitiveDetector
It should be assigned to a logical volume as a kind of ready-to-
use sensitive detector

It takes an arbitrary number of G4VPrimitiveScorer
classes, to define the scoring quantities you need

Each G4VPrimitiveScorer accumulates one physics
quantity for each physical volume
e.g. G 4PSDoseScorer (a concrete class of
G4VPrimitiveScorer) accumulates dose in each cell

By using this approach: no need to implement the Sensitive
detector or the Hit class

8

G A P Cirrone, PhD - INFN-LNS (Italy) - pablo.cirrone@lns.infn.it

G4VPrimitiveScorer

Primitive scores (classes derived from the
G4VPrimitiveScorer) have to be registered to
the G4MultiFunctionalDetector

->RegisterPrimitive(); ->RemovePrimitive()

They are defined to score one kind of quantity
(surface, flux, total dose) and to generate one hit
collection per event

automatically named as 
<MultiFunctionalDetectorName>/<PrimitiveScorerName>

Hit collections can be retrieved in the EventAction or
RunAction

9

G A P Cirrone, PhD - INFN-LNS (Italy) - pablo.cirrone@lns.infn.it

…. for example
10

MyDetectorConstruction::ConstructSDandField()

{

G4MultiFunctionalDetector* myScorer = new
G4MultiFunctionalDetector(“myCellScorer”);

myCellLog->SetSensitiveDetector(myScorer);

G4VPrimitiveSensitivity* totalSurfFlux = new
G4PSFlatSurfaceFlux(“TotalSurfFlux”);

myScorer->RegisterPrimitive(totalSurfFlux);

G4VPrimitiveSensitivity* totalDose = new
G4PSDoseDeposit(“TotalDose”);

myScorer->RegisterPrimitive(totalDose);
}

instantiate multi-
functional detector

attach to volume

create a primitive
scorer (surface

flux) and register
it

create a primitive
scorer (total dose)

and register it

G A P Cirrone, PhD - INFN-LNS (Italy) - pablo.cirrone@lns.infn.it

…. for example
10

MyDetectorConstruction::ConstructSDandField()

{

G4MultiFunctionalDetector* myScorer = new
G4MultiFunctionalDetector(“myCellScorer”);

myCellLog->SetSensitiveDetector(myScorer);

G4VPrimitiveSensitivity* totalSurfFlux = new
G4PSFlatSurfaceFlux(“TotalSurfFlux”);

myScorer->RegisterPrimitive(totalSurfFlux);

G4VPrimitiveSensitivity* totalDose = new
G4PSDoseDeposit(“TotalDose”);

myScorer->RegisterPrimitive(totalDose);
}

instantiate multi-
functional detector

attach to volume

create a primitive
scorer (surface

flux) and register
it

create a primitive
scorer (total dose)

and register it

G A P Cirrone, PhD - INFN-LNS (Italy) - pablo.cirrone@lns.infn.it

…. for example
10

MyDetectorConstruction::ConstructSDandField()

{

G4MultiFunctionalDetector* myScorer = new
G4MultiFunctionalDetector(“myCellScorer”);

myCellLog->SetSensitiveDetector(myScorer);

G4VPrimitiveSensitivity* totalSurfFlux = new
G4PSFlatSurfaceFlux(“TotalSurfFlux”);

myScorer->RegisterPrimitive(totalSurfFlux);

G4VPrimitiveSensitivity* totalDose = new
G4PSDoseDeposit(“TotalDose”);

myScorer->RegisterPrimitive(totalDose);
}

instantiate multi-
functional detector

attach to volume

create a primitive
scorer (surface

flux) and register
it

create a primitive
scorer (total dose)

and register it

G A P Cirrone, PhD - INFN-LNS (Italy) - pablo.cirrone@lns.infn.it

…. for example
10

MyDetectorConstruction::ConstructSDandField()

{

G4MultiFunctionalDetector* myScorer = new
G4MultiFunctionalDetector(“myCellScorer”);

myCellLog->SetSensitiveDetector(myScorer);

G4VPrimitiveSensitivity* totalSurfFlux = new
G4PSFlatSurfaceFlux(“TotalSurfFlux”);

myScorer->RegisterPrimitive(totalSurfFlux);

G4VPrimitiveSensitivity* totalDose = new
G4PSDoseDeposit(“TotalDose”);

myScorer->RegisterPrimitive(totalDose);
}

instantiate multi-
functional detector

attach to volume

create a primitive
scorer (surface

flux) and register
it

create a primitive
scorer (total dose)

and register it

G A P Cirrone, PhD - INFN-LNS (Italy) - pablo.cirrone@lns.infn.it

…. for example
10

MyDetectorConstruction::ConstructSDandField()

{

G4MultiFunctionalDetector* myScorer = new
G4MultiFunctionalDetector(“myCellScorer”);

myCellLog->SetSensitiveDetector(myScorer);

G4VPrimitiveSensitivity* totalSurfFlux = new
G4PSFlatSurfaceFlux(“TotalSurfFlux”);

myScorer->RegisterPrimitive(totalSurfFlux);

G4VPrimitiveSensitivity* totalDose = new
G4PSDoseDeposit(“TotalDose”);

myScorer->RegisterPrimitive(totalDose);
}

instantiate multi-
functional detector

attach to volume

create a primitive
scorer (surface

flux) and register
it

create a primitive
scorer (total dose)

and register it

G A P Cirrone, PhD - INFN-LNS (Italy) - pablo.cirrone@lns.infn.it

Some primitive scorers that you may find useful
11

Concrete Primitive scorers (-> Application Developers Guide
4.4.5

Track length
G4PSTrackLength

Deposited energy
G4PSEnergyDeposit, G4PSDoseDeposit

Current/Flux
G4PSFlatSurfaceCurrent, G4PSSphereSurfaceCurrent

Others
G4PSMinKinEAtGeneration, G4PSNofSecondary

G A P Cirrone, PhD - INFN-LNS (Italy) - pablo.cirrone@lns.infn.it

A closer look at some scorer
12

SurfaceCurrent :
Count number of
injecting particles
at defined surface.

L : Total step length in the cell

CellFlux :
Sum of L / V of
injecting particles
in the geometrical
cell.

G A P Cirrone, PhD - INFN-LNS (Italy) - pablo.cirrone@lns.infn.it

G4VSDFilter

A G4VSDFilter can be attached to
G4VPrimitiveSensitivity to define which
kind of track have to be scored (e.g. one wants to
know surface flux of protons only)

G4SDChargeFilter (accepts only charged
particles)
G4SDNeutralFilter (accepts only neutral particles)
G4SDKineticEnergyFilter (accepts tracks in a
defined range of kinetic energy)

13

G A P Cirrone, PhD - INFN-LNS (Italy) - pablo.cirrone@lns.infn.it

… for example
14

MyDetectorConstruction::ConstructSDandField()

{

G4VPrimitiveSensitivity* protonSurfFlux

= new G4PSFlatSurfaceFlux(“pSurfFlux”);

G4VSDFilter* protonFilter = new

G4SDParticleFilter(“protonFilter”);
protonFilter->Add(“proton”);

protonSurfFlux->SetFilter(protonFilter);

myScorer->RegisterPrimitive(protonSurfFlux);

}

create a primitive
scorer (surface
flux), as before

create a particle
filter and add
protons to it

register the filter
to the primitive

scorer

register the scorer to the
multifunc detector (as

shown before)

G A P Cirrone, PhD - INFN-LNS (Italy) - pablo.cirrone@lns.infn.it

… for example
14

MyDetectorConstruction::ConstructSDandField()

{

G4VPrimitiveSensitivity* protonSurfFlux

= new G4PSFlatSurfaceFlux(“pSurfFlux”);

G4VSDFilter* protonFilter = new

G4SDParticleFilter(“protonFilter”);
protonFilter->Add(“proton”);

protonSurfFlux->SetFilter(protonFilter);

myScorer->RegisterPrimitive(protonSurfFlux);

}

create a primitive
scorer (surface
flux), as before

create a particle
filter and add
protons to it

register the filter
to the primitive

scorer

register the scorer to the
multifunc detector (as

shown before)

G A P Cirrone, PhD - INFN-LNS (Italy) - pablo.cirrone@lns.infn.it

… for example
14

MyDetectorConstruction::ConstructSDandField()

{

G4VPrimitiveSensitivity* protonSurfFlux

= new G4PSFlatSurfaceFlux(“pSurfFlux”);

G4VSDFilter* protonFilter = new

G4SDParticleFilter(“protonFilter”);
protonFilter->Add(“proton”);

protonSurfFlux->SetFilter(protonFilter);

myScorer->RegisterPrimitive(protonSurfFlux);

}

create a primitive
scorer (surface
flux), as before

create a particle
filter and add
protons to it

register the filter
to the primitive

scorer

register the scorer to the
multifunc detector (as

shown before)

G A P Cirrone, PhD - INFN-LNS (Italy) - pablo.cirrone@lns.infn.it

… for example
14

MyDetectorConstruction::ConstructSDandField()

{

G4VPrimitiveSensitivity* protonSurfFlux

= new G4PSFlatSurfaceFlux(“pSurfFlux”);

G4VSDFilter* protonFilter = new

G4SDParticleFilter(“protonFilter”);
protonFilter->Add(“proton”);

protonSurfFlux->SetFilter(protonFilter);

myScorer->RegisterPrimitive(protonSurfFlux);

}

create a primitive
scorer (surface
flux), as before

create a particle
filter and add
protons to it

register the filter
to the primitive

scorer

register the scorer to the
multifunc detector (as

shown before)

G A P Cirrone, PhD - INFN-LNS (Italy) - pablo.cirrone@lns.infn.it

How to retrieve information - I
15

n At the end of the day, one wants to retrieve the
information from the scorers
n True also for the customized hits collection

n Each scorer creates a hit collection, which is
attached to the G4Event object
n Can be retrieved and read at the end of the event,

using an integer ID
n Hits collections mapped as
G4THitsMap<G4double>* so can loop on the
individual entries

n Operator += provided which automatically sums up
hits (no need to loop)

G A P Cirrone, PhD - INFN-LNS (Italy) - pablo.cirrone@lns.infn.it

How to retrieve information - II
16

//needed only once
G4int collID = G4SDManager::GetSDMpointer()

->GetCollectionID("myCellScorer/TotalSurfFlux");

G4HCofThisEvent* HCE = event->GetHCofThisEvent();

G4THitsMap<G4double>* evtMap =
static_cast<G4THitsMap<G4double>*>
(HCE->GetHC(collID));

std::map<G4int,G4double*>::iterator itr;
for (itr = evtMap->GetMap()->begin(); itr !=

evtMap->GetMap()->end(); itr++) {
G4double flux = *(itr->second);
G4int copyNb = *(itr->first);

}

Get ID for the
collection (given

the name)

Get all HC
available in this

event
Get the HC with the

given ID (need a cast)

Loop over the
individual entries of
the HC: the key of the
map is the copyNb,
the other field is the

real content

G A P Cirrone, PhD - INFN-LNS (Italy) - pablo.cirrone@lns.infn.it

Command-based scoring
17

Thanks to the newly developed parallel navigation, an
arbitrary scoring mesh geometry can be defined which

is independent to the volumes in the mass geometry.
Also, G4MultiFunctionalDetector and primitive scorer classes

now offer the built-in scoring of most-common quantities

• Define a scoring mesh
/score/create/boxMesh <mesh_name>
/score/open, /score/close

• Define mesh parameters
/score/mesh/boxsize <dx> <dy> <dz>
/score/mesh/nbin <nx> <ny> <nz>
/score/mesh/translate,

• Define primitive scorers
/score/quantity/eDep <scorer_name>
/score/quantity/cellFlux <scorer_name>
currently 20 scorers are available

UI commands for scoring à no C++ required, apart
from instantiating G4ScoringManager in main()

U
n

d
er

 d
ev

el
op

m
en

t!

• Define filters
/score/filter/particle <filter_name>
<particle_list>
/score/filter/kinE <filter_name>
<Emin> <Emax> <unit>

currently 5 filters are available
• Output

/score/draw <mesh_name>
<scorer_name>

/score/dump, /score/list

18

18

18

18

G A P Cirrone, PhD - INFN-LNS (Italy) - pablo.cirrone@lns.infn.it

How to learn more
19

examples/extended/runAndEvent/RE02
(use of primitive scorers)

examples/extended/runAndEvent/RE03
(use of UI-based scoring)

Have a look at the dedicated
extended examples released with

Geant4:

