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What’s the problem?

How can we solve it?

Why does it have something to say about particles?

OK, it’s a dark matter: but how dark is dark? Can 
we shed some light on it?
(or: Can it shed some light to us?)



Universe is “odd”

70% Dark Energy
26% Dark Matter
4% Nuclear matter



Dark Matter

Dynamics of galaxy clusters
Rotational curves of galaxies
Weak lensing
Structure formation from primordial 

density fluctuations
Energy density budget



Dynamics of galaxy clusters
Rotational curves of galaxies
Weak lensing
Structure formation from primordial 

density fluctuations
Energy density budget

Dark Matter

Virial theoremZwicky, 1933

2hT i = �hVTOTi



Velocity dispersion of galaxies in the cluster is too 
large: the cluster should “evaporate”

Much more mass than the visible one is needed

Galaxy cluster

v ~ (800 ÷ 1000) km/s

Zwicky (1933)



Galaxies
Gas 

Dark Matter

1%
9%
90%

Galaxy cluster



Dynamics of galaxy clusters
Rotational curves of galaxies
Weak lensing
Structure formation from primordial 

density fluctuations
Energy density budget

Dark Matter

Rubin, early ‘70s

v(r) /
p

M(r)/r

v(r) ⇠ r�1/2

v(r) ⇠ const



Spiral Galaxy

v ~ 200 km/s
v ~ 50 km/s

v(r) / r�1/2



Periferic stars are faster than expected
Faster  =  More mass

Much more mass than luminous mass
Dark Matter

v ~ 200 km/s

v ~ 200 km/s

v ~ 200 km/s

Rubin (1970)Spiral Galaxy
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Dark Matter



Gravitational lensing 





Lens equation
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Thin lens: distances involved are much larger than the size of 
the lens

Lens equation (can have multiple solutions)

Deflection angle

Projected mass density

For weak fields, its 
the sum of the 
deflection angles 
4GM/b over the 
mass of the lens



Gravitational lensing

A large amount mass between the background galaxies and us 
can be inferred by the strong lensing effect



Universe at large scales

Real Universe



Dynamics of galaxy clusters
Rotational curves of galaxies
Weak lensing
Structure formation from primordial 

density fluctuations
Energy density budget

Dark Matter

DM needs to be (mainly) cold 
and (mainly) non-collisional



Formation of structures in LCDM

Simulated Universe



Dynamics of galaxy clusters
Rotational curves of galaxies
Weak lensing
Structure formation from primordial 

density fluctuations
Energy density budget

Non-baryonic (cold) dark matter is needed
No candidate in the Standard Model(*)

New fundamental Physics

Particle Dark Matter

(*) Standard neutrino:
Too light: act as HDM (not CDM)



Dynamics of galaxy clusters
Rotational curves of galaxies
Weak lensing
Structure formation from primordial 

density fluctuations
Energy density budget

Two fundamental questions

- Identify the particle candidate
- Identify a non-gravitational signal, 

manifestation of its particle nature

Non-baryonic (cold) dark matter is needed
No candidate in the Standard Model

New fundamental Physics

Particle Dark Matter



Alternatively: primordial black holes might solve 
the DM problem (debated issue)



If a particle, where it does come from?
Produced, through some mechanism, in the early Universe
The early Universe is a plasma:

Elastic processes                        kinetic equilibrium

Inelastic processes                  chemical equilibrium

� �
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Reshuffle particles energies and momenta

Create or destroy particles in the plasma



Abundance evolution

Y = n/s
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The universe cools down Particle in equilibrium
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Abundance evolution

The universe cools down Particles detache from the plasma
“freeze-out” of its abundance

�

� a

a

Y = n/s

⌦� =
⇢�
⇢C

non-relativistic 
at decoupling



Abundance evolution
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The universe cools down Particle detaches from the plasma
“freeze-out” of its abundance



Abundance evolution

Y = n/s

⌦� =
⇢�
⇢C

weaker interactions

stronger interactions

The universe cools down Abundance today (relic)



Succesfull “thermal” DM candidate

� Needs to be produced in the early Universe 

� Needs to be “cold” (or, at least, “warm” enough)
– For thermal production: weakly interacting and massive (WIMP)

– If light, it nevertheless needs to act as “cold”

� Needs to be neutral

� Needs to be stable (or, if it decays, it needs a lifetime 
larger than the age of the Universe) 

�h2 � ⇥�v⇤�1
ann ��v⇥ann = 3 · 10�26cm3s�1

unless coannihilation occurs



Alternative mechanisms
The standard paradigm for WIMP CDM is a thermal symmetric relic (i.e. 
particle and antiparticles have the same number density)

Partial thermaliztion 
- Freeze-in, E-WIMP, FIMPs

Asymmetry between particle/antiparticle
- The relic abundance is set by the asymmetry, not thermal freeze-out
- This may link DM abundance to baryon asymmetry

Non-thermal production
- DM produced by the decay of a heavier particle
- Peculiar cosmological dynamics (e.g.: misalignment for axions)
- Oscillations from “friendly” states (e.g. sterile neutrinos)



What’s dark matter?



A multiple  approach

� Astrophysical signals
– Tests DM as particle in its environment
– Signals are not produced under our own direct control
– Complex backgrounds
– Multimessenger, multiwavelength, multitechnique strategy

� Accelerator / Lab signals
– Produce New Physics states and help in shaping the underlying model
– Allows (hopefully) to identify the physical properties of the DM sector
– Controlled environment

One does not fit all … profit of all opportunities
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Scattering with ordinary matter 
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Production at accelerators

Annihilation (or decay)

Mechanisms of DM signal production
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Mechanisms of DM signal production

Signals occur in astrophysical context

Directly test DM the particle-physics 
nature of DM 

Signal produced in accelerators

Directly tests New Physics: compatibility 
with DM needs to be cross-checked 
with cosmology adn astrophysics



SUSY extension of the Standard Model

2 Higgs doublets

h
H

A pseudoscalar

scalar
scalar



Extra dimensions (Kaluza Klein theories)
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Models with additional scalars [GeV-TeV, WIMP]
Singlet
Doublet (e.g.: 2 higgs doublet model)
Triplet

Models based on extended symmetries       [GeV-TeV, WIMP]
GUT inspired
Discrete symmetries

Mirror dark matter

Sterile neutrinos [keV, non WIMP, warm]

Axion [μeV, non WIMP, cold]

ALP (axion-like-particles, light scalars)
[> 10-22 eV, non WIMP, cold (BE condensate)]

Further models and candidates
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“Strong (-ish)”
Self-interacting
Technicolor DM
…

“EM (-ish)”
Millicharged DM
Electric/magnetic dipole
…

Weak
WIMP

Gravitational

SH-DM

GeV TeVkeVμeV

Majoron

WIMP     SuperheavyNon-WIMP

Particle physics scales

Relic from the early Universe
Thermal
Non thermal

Dynamically: non relativistic (cold)
collisionless

mass of the proton



Try to produce the DM particle in a controlled 
environment ...

High-E accelerators: for WIMPs (GeV-TeV)
Emma Tolley on Tuesday

Low-E accelerators: for lighter states
Paolo Valente on Wednesday

Beam dumps, others: for axions, ALPs
Giovanni Carugno on Wednesday



WIMPs at accelerators
Focus now is on the Run II of LHC

Effective 
Field Theories

Simplified 
Models

Complete 
Theories

q̄

q

DM

DM DM type: S, F, V (…)
g(DM,q)    mDM

coupling structure(s, v, t)
∧: EFT scale and validity

/ET

q̄

q

DM

DM

/ETmediator
(portal)

g(DM,med)    mDM

g(med, q) Γmed mmed channel

DM type: S, F, V (…)
Portal: S, F, V, T

SUSY
Extra-dim
etc



Non-WIMPs at accelerators
� Light DM at the MeV-GeV scale:

– Dirac or Majorana fermions
– Scalars o pseudoscalars
– Asymmetric LDM
– Dark photons

� Mediators:
– Vector portal
– Higgs portal
– Neutrino portal
– Axion portal

� Search of visible decays (e+e-) under way, and studies for accessing 
invisible decays

� Rich experimental program:
– Hadronic beams: SHIP e NA62 at CERN
– Electron beams
– Meson decays



Look at the DM particle where DM is ...



We can exploit every structure where DM is present ...

– Our Galaxy
Ø Smooth component
Ø Subhalos

– Satellite galaxies (dwarfs)

– Galaxy clusters
Ø Smooth component
Ø Individual galaxies
Ø Galaxies subhalos

– “Cosmic web”

Where to search for a signal ...



DM as a particle might ...

Interact with ordinary matter Direct detection

Produce effects in astrophysical 
environments, like in stars



cored

Dark Matter haloDisk

Sun

Earth

Heliosphere

Galactic signals

Direct detection
Electrons/positrons
Antiprotons
Antideuterons
Photons (from radio to gamma rays)
Neutrinos from earth and sun

� �

q q
(s; heavy; u, d) (s; heavy; u, d)

Feels ony the local DM density (not space distribution)
Feels how DM is locally distributed in velocity space



Direct detection signal

Typical process for WIMP DM

Recoil rate

For non-WIMP (kev, MeV) DM: interaction on electrons

�+N (AN , ZN )
at rest

! �+N (AN , ZN )
recoil

dR

dER
=

⇠N
mN
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Underground Labs
The)Family)Is)Expanding)

LNGS

Modane
CanfrancSURF

Andes

Phyasalmi

Boulby
SnolabSoudan

Kamioka

YangYang

CJPL

Stawell

INO



LNGS – Gran Sasso Lab (INFN)

Giuliana Fiorillo on Friday



Galactic center Sun

Earth

220 Km/s

30 Km/s

View from the top

Period: 1 year

Stationary over the lifetime of 
an experiment
Directional boost

Period: 1 day

Typical signatures of direct detection

Annual modulation

Diurnal modulation

Directionality



No systematics or side reaction able to 
account for the measured modulation 
amplitude and to satisfy all the 
peculiarities of the signature 

P
o

w
er

 s
p

ec
tr

u
m

  

Multiple hits events =  
Dark Matter particle “switched off” 

This result offers an additional strong support for the presence of DM particles in the 
galactic halo further excluding any side effect either from hardware or from software 
procedures or from background 

2-6 keV 

Comparison between single hit residual rate (red points) and multiple 
hit residual rate (green points); Clear modulation in the single hit events; 
No modulation in the residual rate of the multiple hit events  
A=-(0.0005±0.0004) cpd/kg/keV 

EPJC 56(2008)333, EPJC 67(2010)39, EPJC 73(2013)2648 
continuous line: t0 = 152.5 d,  T =1.0 y 

Single-hit residuals rate vs time in 2-6 keV 

A=(0.0110±0.0012) cpd/kg/keV 
χ2/dof = 70.4/86     9.2 σ C.L. 

Absence of modulation? No 
χ2/dof=154/87 P(A=0) = 1.3×10-5 

Fit with all the parameters free: 
A = (0.0112 ± 0.0012) cpd/kg/keV      
t0 = (144±7) d  -  T = (0.998±0.002) y 
9.3 σ C.L. 

Principal mode  
2.737×10-3 d-1 ≈ 1 y-1 

Model$Independent$Annual$Modulation$Result8
DAMA/NaI + DAMA/LIBRA-phase1   Total exposure: 487526 kg×day = 1.33 ton×yr 

The data favor the presence of a modulated behaviour with all the proper 
features for DM particles in the galactic halo at more than 9σ C.L. 

From Belli’s talk at TAUP 2015, http://taup2015.to.infn.it

Annual modulation
DAMA, 9.2σ with 1.33 ton x yr, 15 cycles  



High WIMP mass

Aprile et al (XENON 1T Collab), 1705.06655  
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Low WIMP mass

Angloher et al (CRESST), EPJC 76 (2016) 25

Contact-type scalar interactions (O1)

“Neutrino floor”

Agnese et al (SuperCDMS) PRL 116 (2016) 071301



DM as a particle might ...

Self annihilate or decay Send us messengers            
(indirect detection)

Exotic injections that can alter 
properties of messengers (e.g. 
CMB: SZ, reionization; gamma-
rays absorption)

W�

�

�

l q W+Z H

l q Z H



Messengers

Charged CR (e±, antip, antiD)
Neutrinos
Photons
-Gamma-rays
-Prompt production
- IC from e± on ISRF and CMB

-X-rays
- IC from e± on ISRF and CMB

-Radio
-Synchro from e± on mag. field



Dark Matter halo

Diffusive halo

Disk

Sun

Earth

Heliosphere

View from the side

Galactic environment



Sun

Earth

Heliosphere

Galactic signals

Electrons/positrons
Antiprotons
Antideuterons

Galactic Diffusion
Energy losses

Transport in the Heliosphere

p̄, D̄

e+, e�



Galactic environment

R

R=20 kpc

h=0.1 kpc
r

L=3-10 kpc

=8.0 kpc

z

(axial symmetry around z)

R 0.6

( B )
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(H+He+...) ISM

(p,He)

Spallation

V1 V2

p1 p2

Þ1 Þ2

(Halo+Disc) (Disc)

(Disc)(Halo+Disc)

Diffusion on magnetic inhomogeneities Acceleration by shock waves

ß disintegration

Energy losses

Reacceleration : Va

N j

N l

N k

Z,A
Z’,A’

(A,Z) (A,Z+1)

(A,Z-1)

Vc

Vc

Ec/n
Ec/n

(Disc)
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Transport equation
Time variation

Diffusion [K]
Convection [V]
Adiabatic losses (in expanding plasma)

Catastrophic losses (for nuclei)
elastic :     N + ISM -> N + ISM
inelastic :  N + ISM -< X + (...) 

Energy losses [b]
e+/e- :  synchrotron

inverse Compton
brems (free-free)
ionization, Coulomb

Nuclei :  ionization, Coulomb
Diffusion in momentum space (reacceleration) [K]

Primary source

Secondary sources

@Nj

@t

+ [�~r · (K(E,~r)~r) + ~r · ~V (~r))] Nj

+(�rad + �inel) Nj

+
@
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Sun

Earth

Heliosphere

Galactic signals

Electrons/positrons
Antiprotons
Antideuterons

Galactic Diffusion
Energy losses

Transport in the Heliosphere

p̄, D̄

e+, e�



Dark Matter halo

Diffusive halo

Disk

Sun

Earth

Heliosphere

Galactic signals

Photons (from radio to gamma rays)
Neutrinos from the Galaxy

Gamma rays
prompt (π0 decay)
IC from e+/e- on ISRF

Radio
synchrotron emission from
e+/e- on galactic B



Extra-galactic environment

Sunyaev-Zeldovich effect on CMB

Optical depth of the Universe 

Extragalactic signals

Photons: gamma, X, radio
Neutrinos



Dark Matter halo

Diffusive halo

Disk

Sun

Earth

Heliosphere

Galactic signals

Direct detection
Electrons/positrons
Antiprotonsntideuterons
Photons (from radio to gamma rays)
Neutrinos from earth and sun

� �

q q
(s; heavy; u, d) (s; heavy; u, d)

W�

�

�

l q W+Z H

l q Z H

Feels ony the local DM density (not space distribution)
Feels (somehow) how DM is locally distributed in velocity space

For gravitational 
capture in the 
Sun and Earth

For the generation
of the neutrino 
signal



Charged 
cosmic rays signals

Be patient for a few more minutes:
Bruna Bertucci’s talk is coming next!



Gamma ray sky

Fermi/LAT map

Galactic foreground emission
Resolved sources
Diffuse Gamma Rays Backgound (DGRB)



DGRB Intensity
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DGRB and Dark Matter
The Good: Spectral behaviour different from astro sources:  

(σ,m, channel)
The Bad:    Can be quite subdominant in intensity
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DGRB intensity bounds on DM
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Dwarf galaxies

bound

PRL 115 (2015) 231301 

Charles et al (Fermi Collab) Phys Rep 636 (2016) 1
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Galactic center: an “excess” ?

Daylan et al, Phys Dark Univ 12 (2016) 1

Hooper, Goodenough, PLB (2011) 697 (2011)
Hooper, Linden, PRD 84 (2011) 123005

Boyarsky et al., PLB (2011) 705
Daylan et al., Phy Dark Univ 12 (2016) 1
Abazajian et al, PRD 90 (2014) 023526 

Lacroix, Boehm, Silk, PRD 90 (2014) 043508
Calore et al, PRD 91 (2015) 063003  



DM interpretation

Hooper, Goodenough, PLB (2011) 697 (2011)
Hooper, Linden, PRD 84 (2011) 123005

Boyarsky et al., PLB (2011) 705
Daylan et al., Phy Dark Univ 12 (2016) 1
Abazajian et al, PRD 90 (2014) 023526 

Lacroix, Boehm, Silk, PRD 90 (2014) 043508
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Alternative approaches?

� Indirect detection signals are intrinsically anisotropic
(being produced by DM structures, present at any scale)

� EM signals (and neutrinos) more directly trace the underlying 
DM distribution: they need to exhibit some level of anisotropy

– “Bright” DM objects: would appear as resolved sources
Ø e.g:   gamma or radio halo around clusters, dwarf galaxies or even subhalos

– Faint DM objects: would be unresolved (i.e. below detector sensitivity)
Ø Diffuse flux: at first level isotropic

at a deeper level anisotropic 



Extra galactic emission
Higher redshift

Extra galactic emission
Lower redshift
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Emission is intrisically
anisotropic

Alternative approaches?



Anisotropic emission
Even though sources are too dim to be individually 

resolved, they can affect the
statistics of photons

across the sky

Currently under study



Earth

Detector

Sun

Neutrinos from Earth and Sun 

and neutrinos from the Galaxy



Neutrinos from Earth and Sun 
� Capture:

– Galactic DM particles that cross the Earth and the Sun, can 
interact with the nuclei in these bodies and loose enough energy 
to remain gravitationally captured

� Accumulation:
– After subsequent interactions they tend to drop into the 

innermost parts of the Earth and the Sun, where they accumulate

� Annihilation:
– When the energy density in the inner parts of the Earth and the 

Sun increases enough, they may start to annihilate
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Super
Kamiokande



ANTARES
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