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Overview of the seminar 

•  From usual X-ray transitions to Pauli-forbidden ones 

 
• The Fermi golden rule: transition-matrix elements 

 

• The (non-relativistic) many-body wave-function: the effect  

  of antisymmetrization 

 

• Full calculation of transition rate and energy-shift by the  

  relativistic Multi-Configuration Dirac-Fock code 

 

• A relatively simple estimation of the energy-shift 

 

• Conclusions: and what about the ‘new’ electrons ? 

 

 

•  Is it possible to detect a transient violation of the Pauli principle  

    at the subattosecond time scale ? 

 
• The Corinaldesi’s paper 

 

• Retarded interactions of the E.M. field and Zitterbewegung:  

  towards a non-orthodox view ? 



The Fermi golden rule: transition-matrix elements 

Typical values of absorption edges 

Emission 

g 

f 

A typical emission process from state fg to state ff: 

where: so that: 

Only pick up and rewrite it: 

with: and: 

with o = e . r By summing over all states: 

We remind that: a space integral 

  (X-ray data booklet) 



The many-body wave-function and the Schrödinger equation 

The ultimate goal of most approaches in solid-state physics and quantum chemistry is to solve  

the time-independent problem (usually with Schrödinger Hamiltonian): 

where (M=number of nuclei, N=number of electrons): 

In the Born-Oppenheimer approximation we need to solve the problem: 

where 

with 

And the total energy is given by: 



The effect of antisymmetrization: the exchange interaction 

In order to impose the antisymmetrization of the electrons, we need to write the total 

wave function as a Slater determinant (or as a linear combination of Slater determinants): 

here each yi represents  

a spin-orbital, single  

particle wave function 

is the Coulomb integral >0 

is the exchange integral 

The Hartree-Fock approximation is a method to find the single-particle orthogonal orbitals yi that  

minimize the total energy EHF of the wave-function YHF. The expectation value is:  

where  represents the kinetic + the electron-nucleus energy 

and  



The Hartree-Fock approximation 

The minimization of the previous energy functional with the normalization conditions 

leads to the Hartree-Fock equations: with 

In spite of their apparent Schrödinger-like form, the Hartree-Fock equations are non-linear, as: 

with 

The exchange interaction Kj (xi) has no classical analog and depends on the spin and orbital variables  

This is what is done by the MCDF code, except that it works with the Dirac hamiltonian  

and it uses multiconfiguration (linear combinations of) Slater determinants 

The Hartree-Fock potential VHF is non-local and non-linear (it depends on y):  

the equations must be solved self-consistently 



The relativistic Multi-Configuration Dirac-Fock code 

Hamiltonian up to order  a2 

with the addition of the Breit term: 

The other main difference with the non-relativistic case is due  

to the bi-spinor form of the single-particle wave-functions 

Relativistic corrections to the Hartree-Fock equations tend to be largest in the  

region immediately surrounding the nucleus (bigger kinetic energy). Therefore 

core orbitals are usually much more affected than valence orbitals 

From J.P. Desclaux and collaborators, PRA 17, 1804 (1978) & PRA 42, 5139 (1990) 



The relativistic MCDF code 

Transition Pauli obeying 

transitions  

Pauli violating transitions Energy difference 

Standard 

transition 

Energy [eV]  

Energy [eV] Transition probability 

velocity [1/s] 

Estandard-EVIP  [eV] 

2p1/2 ==» 1s1/2  (Kα2) 8,047.78 7,728.92  2.6372675E+14 318.86 

2p3/2==» 1s1/2  (Kα1) 8,027.83 7,746.73 2.5690970E+14 279.84 

3p1/2 ==» 1s1/2  (Kβ2) 8,905.413 8,529.54 2.7657639E+13 375.873 

3p3/2==» 1s1/2  (Kβ1) 8,905.413 8,531.69 2.6737747E+13 373.723 

3d3/2==»2p3/2   (Lα2) 929.7 822.84 5.9864102E+07 106.86 

3d5/2==»2p3/2  (Lα1) 929.7 822.83 3.4922759E+08 106.87 

3d3/2==»2p1/2   (Lβ1) 949.84 841.91 3.0154308E+08 107.93 

3s1/2 ==» 2p1/2 832.1 762.04 3.7036365E+11 70.06 

3s1/2 ==» 2p3/2 811.7 742.97 7.8424473E+11  68.73 

3d5/2 ==» 1s (Direct 

Radiative Recombination) 

8,977.14 8,570.82 1.2125697E+06 406.32 

Transitions for Copper 

 

http://www.lkb.upmc.fr/metrologysimplesystems/mdfgme-a-general-purpose-multiconfiguration-dirac-foc-program/ 



The relativistic MCDF code 

Transition Pauli 

obeying 

transitions 

Pauli violating transitions Energy difference 

Standard 

transition 

Energy [eV] 

Energy [eV] Transition 

probability velocity 

[1/s] 

Estandard-EVIP  [eV] 

2p1/2 ==» 1s1/2  (Kα2) 66,990.73 66,207.58 2.1042335E+16 783.15 

2p3/2==» 1s1/2   (Kα1) 68,804.50 68,002.09 1.7835326E+16 802.41 

3p1/2 ==» 1s1/2   (Kβ2) 77,575.01 76,547.92 3.8657822E+15 1,027.09 

3p3/2==» 1s1/2    (Kβ1) 77,979.80 76,937.91 3.6994027E+15 1,041.89 

3d3/2==»2p3/2    (Lα2) 9,628.05 9,374.76 1.9441580E+14 253.29 

3d5/2==»2p3/2      (Lα1) 9,713.44 9,457.85 1.1406776E+15 255.59 

3d3/2==»2p1/2    (Lβ1) 11,442.45 11,169.27 1.1012516E+15 273.18 

3s1/2 ==» 2p1/2 10,308.41 10,081.34 6.1287637E+13 227.07 

3s 1/2==» 2p3/2 8,494.03 8,286.83 1.9449551E+14 207.2 

5d5/2 ==» 1s (DRD)  80,391.1 79,465.62 1.7569882E+09 925.48 

Transitions for Gold 

Transition Pauli obeying 

transitions 

Pauli violating transitions Energy 

difference 

Standard 

transition 

Energy [eV] 

Energy [eV] Transition 

probability 

velocity [1/s] 

Estandard-EVIP  

[eV] 

2p1/2 ==» 1s1/2  (Kα2) 72,805.42 71,992.03 2.4680208E+16 813.39 

2p3/2==» 1s1/2   (Kα1) 74,970.11 74,133.89 2.0639102E+16 836.22 

3p1/2 ==» 1s1/2   (Kβ2) 84,450.45 83,385.36 4.5414771E+15 1,065.09 

3p3/2==» 1s1/2    (Kβ1) 84,939.08 83,856.44 4.3479248E+15 1,082.64 

3d3/2==»2p3/2    (Lα2) 10,449.59 10,188.23 2.3146352E+14  261.36 

3d5/2==»2p3/2      (Lα1) 10,551.60 10,287.71 1.3570636E+15 263.89 

3d3/2==»2p1/2    (Lβ1) 12,613.80 12,330.02 1.3246599E+15 283.78 

3s1/2 ==» 2p1/2 11,349.4 11,116.39 7.4132768E+13 233.01 

3s 1/2==» 2p3/2 9,184.56 8,974.38 2.4205005E+14 210.18 

5d5/2 ==» 1s(DRD) 87,589 86,686.79 5.8880291E+11 902.21 

Transitions for Lead  

http://www.lkb.upmc.fr/metrologysimplesystems/mdfgme-a-general-purpose-multiconfiguration-dirac-foc-program/ 



The relativistic MCDF code 

An example of input file… 

http://www.lkb.upmc.fr/metrologysimplesystems/mdfgme-a-general-purpose-multiconfiguration-dirac-foc-program/ 



A simple estimation of the energy shift 

Usual transition 

The case of Ka emission for copper 

= ? Pauli-forbidden transition 

with: 

3 

3 



A simple estimation of the energy shift 

The case of Kb emission for copper: as before, but DE’=8905 eV and V3p-3p = 20 eV. So: 

The case of K-edge emission for copper 

here DE’=8979 eV,  

V1s-1s = 483 eV  and  

V1s-1s = 38 eV 

So, we get: 



What about the ‘new’ (‘fresh’) electrons ? 



Overview of the seminar 

•  From usual X-ray transitions to Pauli-forbidden ones 

 
• A relatively simple estimation of the energy-shift 

 

• The Fermi golden rule: transition-matrix elements 

 

• The interaction hamiltonian: non-relativistic state 

 

• The many-body wave-function: the effect of antisymmetrization 

 

• Full calculation of the energy-shift by the relativistic Dirac-Fock MCDF code 

 

• Conclusions: and what about the ‘new’ electrons ? 

 

 

 

•  Is it possible to detect a transient violation of the Pauli principle  

    at the subattosecond time scale ? 

 
• The Corinaldesi’s paper 

 

• Retarded interactions of the E.M. field and Zitterbewegung:  

  towards a non-orthodox view ? 



Corinaldesi’s idea that Pauli principle can be violated in short time transients 

Premise 



Corinaldesi’s idea that Pauli principle can be violated in short time transients 

Premise 

Consider the 2-particle Lagrangian of the conventional non-relativistic theory: 

And add to it the following non-linear term (written here for fermions): 
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 is a phase ! 

Notice that the non-linear term is zero for both non-overlapping fermions (=1, so ln =0), 

and for symmetrized wave-functions, because Y(1,2) = Y(2,1) (!!!) 



Corinaldesi’s idea that Pauli principle can be violated in short time transients 

Premise 

Define: 

In this framework, the equation of motion leads to the interesting properties: 

1) When the two wave-packets do not overlap, then:   1)()(  symnosym NN
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Corinaldesi’s idea is that Pauli principle can be violated in short time transients 

Corinaldesi’s conclusions 

Conclusions of Corinaldesi’s paper: 

For charged fermions this would amount to a reformulation of electromagnetic 

interactions in which the electromagnetic field would play the role of a 

symmetrizing agent (!) 

This, of course, leaves three questions open:  

1) How could the electromagnetic field act this way ? 

2) What would be a typical value for the «symmetrization time» ? 

3) How could it be possible to measure it ? 



Wave-like behaviour should not be identified with Y ! 
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(in Hamilton-Jacobi form for a statistical set) 

A note for future purposes… 



Schrödinger’s equation can be written non-linearly: 
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A note for future purposes… 

See Holland, “The Quantum Theory of Motion”, Cambridge 1993  



Corinaldesi’s idea is that Pauli principle can be violated in short time transients 

Corinaldesi’s conclusions 

Conclusions of Corinaldesi’s paper: 

For charged fermions this would amount to a reformulation of electromagnetic 

interactions in which the electromagnetic field would play the role of a 

symmetrizing agent (!) 

This, of course, leaves three questions open:  

1) How could the electromagnetic field act this way ? 

2) What would be a typical value for the «symmetrization time» ? 

3) How could it be possible to measure it ? 



Reminder of classical electromagnetism 
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Expression of the Lienard-Wieckert retarded electric field at q2: 

The rate of work done by q1 on q2 to order b4 is: 
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 Oscillating dipoles: Lienard/Wiechert emitting power 
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 Total radiated power of the 

system proportional to the square 

of the dipole moment: 



Retarded differential equations  

 General characteristics of RDE: 

For example: )()(
2
 txtx

tbtatx sincos)(  …for any a and b !          . 

2) Need for a whole set of past data in the interval [0,tr] 

   1)  Solutions are quantized due to retardation (no scale invariance) 

Instead of an algebraic associated equation, you end up with a transcendental  

(trigonometric) associated equation  quantized solutions 



Ping-pong motion in hydrogen atom 

 The infinite proton-mass limit is a singular condition that cannot be 

treated perturbatively (it does not allow retardation effects) 

L. Page and N. Adams, American Journal of Physics 13, 141 (1945) 

 Results of Lyapunov stability analysis: 

1) Resonant orbits are quantized naturally because of delay 

2) Angular momenta are ~ integer multiples of a constant 

 Ping-pong phenomenon is a non-trivial feature absent in ODE 

Angular momentum is not conserved ! 

(purely under the action of internal forces) 

Jayme De Luca, Phys. Rev. E 73, 026221 (2006) 



Ping-pong motion in hydrogen atom 

 The infinite proton-mass limit is a singular condition that cannot 

be treated perturbatively (it does not allow retardation effects) 

 Beatings of modes 

leads to a no-radiation 

Poynting condition ! 

Jayme De Luca, Phys. Rev. E 73, 026221 (2006) 

Action for the electron: 
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= electron velocity 

= retarded proton velocity   ; 

= electron-proton distance at the retarded time 



Dirac equation & ZBW (Hestenes’ interpretation) 

aanana2dn with 

Dirac equation: 

 Zitterbewegung: 

 free particle (p & H constant): 
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D. Hestenes, J. Math. Phys. 8, 798-808 (1967), 14, 893-905 (1973), 16, 556-572 (1975), 16, 573-583 (1975), 

Am. J. Phys., 47, 399-415 (1979), Foundations of Physics, Vol. 40, 1-54 (2010) 



From Dirac to Schrodinger equation 

Non-relativistic limit of Gordon decomposition: 
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the contribution of the  aZBW motion 

in the Hamiltonian is: Q
mm

S
mw 







2

22

2

22
2

8

)(

2

)(

2

1







 

This shows that, in the Schrödinger equation,  stands for twice the spin 

From Dirac to Schrodinger equation 

Kinetic energy of u, v and w: 
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See Holland, “The Quantum Theory of Motion”, Cambridge 1993 and Recami  and Salesi, PRA  57, 98 (1998) 



Given the Hamilton-Jacobi equation: EQrV
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Non-relativistic hydrogen atom 



 

Dirac-relativistic hydrogen atom (I) 
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 We average over ZBW and get the same result as for  

Schrodinger equation… what if we did not average ? 



22mcfree 

Dirac-relativistic hydrogen atom (II) 

Two oscillatory motions determined by W: 
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Dirac equation and the zitterbewegung (summary) 

1) The motion of the electron is determined by the composition of two 

momenta:   
nccl ppp




2) pcl is the motion of the center of mass and pnc is the motion of a massless 

charge (moving at speed c)   

3) both Schrodinger and Dirac equations (if properly interpreted) agree with this 

description: their expectation values correspond to averages on the ZBW frequency   

4) Interestingly, the relativistic time-dilation and length-contraction are 

determined by the c.o.m. velocity, u.   

5) The toroidal motion is responsible of the spin (and might be related to high-

frequency parity-violation effects)   



Hic sunt leones 



Back to PEP: two-electron atoms  

How to extend this ZBW picture to the case of 2 electrons ? 
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AJP, 1945  



Is it possible to detect a transient violation  
of the Pauli principle at the subattosecond scale ?  
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