Evaluation of the energy shift for the Pauli-forbidden X-ray transitions




Overview of the seminar

* From usual X-ray transitions to Pauli-forbidden ones

* The Fermi golden rule: transition-matrix elements

* The (non-relativistic) many-body wave-function: the effect
of antisymmetrization

* Full calculation of transition rate and energy-shift by the
relativistic Multi-Configuration Dirac-Fock code

* A relatively simple estimation of the energy-shift

* Conclusions: and what about the ‘new’ electrons ?

* |s it possible to detect a transient violation of the Pauli principle
at the subattosecond time scale ?

* The Corinaldesi’s paper

» Retarded interactions of the E.M. field and Zitterbewegung:
towards a non-orthodox view ?



The Fermi golden rule: transition-matrix elements

Typical values of absorption edges (X-ray data booklet)
Z| K L L L M M: | M: | Ms | Ms E

H| 1| 135 9
Cl6 |2842] 3713
O 8 [5431| 416
v

Tl 23| 3465 | 626.7 | 319.8 | 5121
Fe] 26 | 7112 | 8446 | 7199 | 7068 | 91.3 327 527 f
Cu| 29 | 8979 | 1096.7 | 9523 | 9327 | 1225 | 773 751
Ag| 47 | 25514 | 3806 | 3524 | 3351 | 7190 | 603.8 | 573.0 | 3740 | 3683 Em|SS|On

U] 92 |115606) 21757 | 20048 | 17166 | 5548 | 5182 | 4303 | 3728 | 3532
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A typical emission process from state ¢, to state ¢z Ofg=— ller]|0|eg) : §(Ef — Eg — haw)
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By summing over all states: ¢ = 4m3¢:rhmz (oelo]e,) : §(Ef — E; — haw) witho=g.r
fa

We remind that: (g |0|@g) = [l pape @n(r: D)0 (r.@)@g(r, 2)r3drd] aspace integral



The many-body wave-function and the Schrodinger equation

The ultimate goal of most approaches in solid-state physics and quantum chemistry is to solve
the time-independent problem (usually with Schréodinger Hamiltonian):

El“-l-fil:;fL T2, ..., TN, Eh.ﬁ?, . E_.'l,r] = EiWVi(#1, T2, ..., TN, El, E:, ...,E_.'l,r}

where (M=number of nuclei, N=number of electrons):
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In the Born-Oppenheimer approximation we need to solve the problem: HojooWoier = Frie Wi

.
with  Flo.. — __Z v2 Z Z Z Zri =T+ Ve + Vi

And the total energy is given by:  F,, = E_,.. + Fu.

M M
Zalp
where J DI—— Z Z

A=1H=A



The effect of antisymmetrization: the exchange interaction

In order to impose the antisymmetrization of the electrons, we need to write the total
wave function as a Slater determinant (or as a linear combination of Slater determinants):

ﬂll{fl} w?{flj 1_;'.1_,-.,-{f1] here each y; represents
b ( 3 o bar (3 7
Wy o Wy = 1 wl{_rz} U?{_I?] e WN {I?] aspin-orbiltal, single
N1 o - : particle wave function
-'!||:I]. (f.'"r] EE{f.'"n" } e WY (I."'r]

The Hartree-Fock approximation is a method to find the single-particle orthogonal orbitals y; that
minimize the total energy E, ¢ of the wave-function ¥.. The expectation value is:

v N
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Eyr = (Vur|H|Wyr) =) Hi+ > Y (T — Kiy)
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where Hi= | (%) —EV — Vere (F) | 1i(F) dT represents the kinetic + the electron-nucleus energy
e e i _ )
Jij = ffﬁ'j{:rsl}u.',-‘{:m} — Y5 (T2 );(F2 )dE1dT>  is the Coulomb integral >0
riz

i . 1 : :
and fi,-J-=ffi;'.';{fl)ﬁ-j(flja;:-,—(f;}q;'.-;{fg}dfldfg is the exchange integral



The Hartree-Fock approximation

The minimization of the previous energy functional with the normalization conditions j P (T (T)dE = .5,-}-

M

= . i _ 1 A _ )
leads to the Hartree-Fock equations: f iy = & 5 ,i =1,2,...,N with f= —5?? — Z o + V(i)
a

In spite of their apparent Schrodinger-like form, the Hartree-Fock equations are non-linear, as:

_—

- 1
A 5@ = [ 1@ P— dz:
Vier(#1) =Y (J(#1) — Kj(#))  with  — 12
~' . | 1 o
| Ry() vi(a) = [ 43(8)4u(22) o v(22)
— 12

The exchange interaction K; (x;) has no classical analog and depends on the spin and orbital variables

The Hartree-Fock potential Vg is non-local and non-linear (it depends on v):
the equations must be solved self-consistently

This is what is done by the MCDF code, except that it works with the Dirac hamiltonian
and it uses multiconfiguration (linear combinations of) Slater determinants



The relativistic Multi-Configuration Dirac-Fock code
From J.P. Desclaux and collaborators, PRA 17, 1804 (1978) & PRA 42, 5139 (1990)

z 1
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The other main difference with the non-relativistic case is due 1 1 .
to the bi-spinor form of the single-particle wave-functions
jmj 1 —p (e
¢i (—}:— A
Tl 1q;(r)y;

Relativistic corrections to the Hartree-Fock equations tend to be largest in the
region immediately surrounding the nucleus (bigger kinetic energy). Therefore

core orbitals are usually much more affected than valence orbitals



The relativistic MCDF code

http://www.lkb.upmc.fr/metrologysimplesystems/mdfgme-a-general-purpose-multiconfiguration-dirac-foc-program/

Transitions for Copper

Transition Pauli obeying Pauli violating transitions Energy difference
transitions
Standard Energy [eV] Transition probability | E.,.qarq-Evie [€V]
transition velocity [1/s]
Energy [eV]
2py, ==» 155, (Ky) 8,047.78 7,728.92 2.6372675E+14 318.86
2p3/,==» 18,/, (Ke) 8,027.83 7,746.73 2.5690970E+14 279.84
3Py == 15, (Kg,) 8,905.413 8,529.54 2.7657639E+13 375.873
3ps==» 15y, (Kgy) 8,905.413 8,531.69 2.6737747E+13 373.723
3d;y/,==92p3); (Ly,) 929.7 822.84 5.9864102E+07 106.86
3d;/,==»2p;, (Ly,) 929.7 822.83 3.4922759E+08 106.87
3d;/,==»2p,;, (Lgy) 949.84 84191 3.0154308E+08 107.93
381/, ==» 2Py, 832.1 762.04 3.7036365E+11 70.06
351/, == 2p3); 811.7 742.97 7.8424473E+11 68.73
3d;/, ==» 1s (Direct 8,977.14 8,570.82 1.2125697E+06 406.32
Radiative Recombination)




Transitions for Gold

The relativistic MCDF code

http://www.lkb.upmc.fr/metrologysimplesystems/mdfgme-a-general-purpose-multiconfiguration-dirac-foc-program/

Transitions for Lead

Transition Pauli Pauli violating transitions Energy difference
obeying
transitions
Standard Energy [eV] Transition Eandara-Evie [€V]
transition probability velocity
Energy [eV] [1/s]
2p, ), ==» 15y, (Ky) 66,990.73 66,207.58 2.1042335E+16 783.15
2ps==» 15, (Kyy) 68,804.50 68,002.09 1.7835326E+16 802.41
3p,, == sy, (Kg) | 77,575.01 76,547.92 3.8657822E+15 1,027.09
3ps==n 1sy,  (Kpy) 77,979.80 76,937.91 3.6994027E+15 1,041.89
3ds,==92p;; (L) 9,628.05 9,374.76 1.9441580E+14 253.29
3ds,==92ps;, (L) | 9,713.44 9,457.85 1.1406776E+15 255.59
3d3,==92py; (Lgy) 11,442.45 11,169.27 1.1012516E+15 273.18
3s,/, ==» 2py, 10,308.41 10,081.34 6.1287637E+13 227.07
35 ,,,==» 2p3), 8,494.03 8,286.83 1.9449551E+14 207.2
5ds/, ==» 1s (DRD) 80,391.1 79,465.62 1.7569882E+09 925.48

Transition Pauli obeying Pauli violating transitions Energy

transitions difference
Standard Energy [eV] Transition Eandara~Evip
transition probability [ev]
Energy [eV] velocity [1/s]

2p, ), ==» 15y, (Kyy) 72,805.42 71,992.03 2.4680208E+16 813.39

2py==» 1y, (Kyy) 74,970.11 74,133.89 2.0639102E+16 836.22

3p1/2 ==»1s,, (KBZ) 84,450.45 83,385.36 4.5414771E+15 1,065.09

3py==» 15y, (Kpy) 84,939.08 83,856.44 4.3479248E+15 1,082.64

3dy,==92ps,  (Ly) 10,449.59 10,188.23 2.3146352E+14 261.36

3ds/,==92p3; (L) 10,551.60 10,287.71 1.3570636E+15 263.89

3dy,==»2py, (Lgy) 12,613.80 12,330.02 1.3246599E+15 283.78

35y, == 2py, 11,349.4 11,116.39 7.4132768E+13 233.01

3s 1,==» 2Dy, 9,184.56 8,974.38 2.4205005E+14 210.18

5ds/, ==» 1s(DRD) 87,589 86,686.79 5.8880291E+11 902.21




The relativistic MCDF code

http://www.lkb.upmc.fr/metrologysimplesystems/mdfgme-a-general-purpose-multiconfiguration-dirac-foc-program/

An example of input file...
Sample input file &> fransition

#501 Cu Tnal

scfmdf max
hdimdf max
maelam max
pnegme maX
podmdf max end
poemdf max jiti=1 mjti=1
: ptf=1 mytf=1
mod_lightspeed=n iflagp=y
nz=29 neigv=1
mdf do_ener=y keep _ener=n binary ener=y do_scf=y #mitial state parameters
Breit=full mag scf=n diag afterSCF=n temul=0 iprt_energ=1
vacpol_scf=y NORBSC=0:
Electric nmlpol=1 NSTEP=0
use_medfener=y Iregul=n modtest=n
sub offset=n modsolv_orb=n

. mod odlm=n
opt_relax=y -
ret_lorentz=n #final state parameters
opt_gedel=y : neigv=1

mod mesh=n icmul=0 iprt_energ=1

EKDﬁC:}-' tstf NORBSC=0 -
mod nuc=n NSTEP=0
nbeli=29 nbelf=29 Iregul=n modtest=n
def config=given modsolv_orb=n
1s2 252 2p6 (2p@])1 3s2 3p6 3d10 : mod_odlm=n

end

1s2 (1s@])1 252 2p6 3s2 3p6 3d10 :



A simple estimation of the energy shift

The case of K emission for copper

3 A - Energy
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A simple estimation of the energy shift

The case of K; emission for copper: as before, but AE’=8905 eV and V;, 5, = 20 eV. So:

AE=AE — (Vi ji— Vip 3p) = 8442 eV .

The case of K-edge emission for copper

10 ORO= | Energy i Frd
45 RO ‘ES =E] +Fl:_3 +F;_;- +Fl:_].-' +P;:_3:z'
P OO OO
3s OO
p WO
2s o T _ T ¥
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\J 1 _
I/V 7\7‘-
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9
31 FHOCOOOCO— | Energy here AE’=8979 eV,
4 OO Vi1 = 483 eV and
ip D .0.0.0.0.0
3% () VlS-lS = 38 eV
2p O 0 0. 0. 0.0
S o< So, we get:
" 2
(z )

AE=AE— (Vi; j;— Vis 34) = 8534 €V




What about the ‘'new’ (‘fresh’) electrons ?




Overview of the seminar

Is it possible to detect a transient violation of the Pauli principle
at the subattosecond time scale ?

* The Corinaldesi’s paper

* Retarded interactions of the E.M. field and Zitterbewegung:
towards a non-orthodox view ?



Premise

Corinaldesi’s idea that Pauli principle can be violated in short time transients

SUPPLEMENTO AL NUOVO CIMENTO N. 3, 1967
VOLUME V

Model of a Dynamical Theory of the Pauli Principle.

E. CORINALDESI
Department of Physics, Boston University - Boston, Mass.

(ricevuto il 4 Marzo 1967)

This note does not question the fact that nature seems to order systems
of «identical » bosons and fermions in a special way which we describe by
means of symmetric and antisymmetric wave functions. Our only aim is to
show that this ordering may be conceived as a dynamical process of which
only the final stage is normally observed.



Premise

Corinaldesi’s idea that Pauli principle can be violated in short time transients

Consider the 2-particle Lagrangian of the conventional non-relativistic theory:

—_._.ﬁi t. t. Font i ﬁ’ 8¥Jf 1~an
P = EmEVIw Viy + V,p ?gw]mlﬂt"ﬁﬂ-...—l-ﬁ(ﬁ y—wp g)

And add to it the following non-linear term (written here for fermions):

L =3P L2+ (20 (YL +¥(2D))iln &)

72071

(P @2+ (2)) P2 -¥(2))
(P2 - 2D (PL2) + P (2)))

where: & is a phase !

Notice that the non-linear term is zero for both non-overlapping fermions (£=1, so Ing =0),
and for symmetrized wave-functions, because ¥(1,2) = -¥(2,1) (!



Premi

S€E

Corinaldesi’s idea that Pauli principle can be violated in short time transients

Define: N®™ = %I(LF 12)-¥v" (2,1)X‘P(1’2) — T(Z’l))j “x,d°,

N = 2 [ (1,2) + 97 (20) (P (L.2) + ¥ (2D %, d X,

In this framework, the equation of motion leads to the interesting properties:

1) When the two wave-packets do not overlap, then:

2) When the two wave-packets start overlapping, then: <

a dN vy

dt
dN (no—sym)

— dt

>0

<0

gdN &Y™ gN (ho-sym)
+

N (M) N (no-svm) _q

up to:

with the property (conservation of probability) :

dt dt

=0

<

/’

NG,

N (no-sym) _ 0
N—



Corinaldesi’s conclusions
Corinaldesi’s idea is that Pauli principle can be violated in short time transients

Conclusions of Corinaldesi’s paper:

The new Schrodinger equation can be expected to yield physical predictions
@jffering from tliose derived from the conventional theory, when times are
involved which are shorter than a characteristic « symimetrization time ».

For charged fermions this would amount to a reformulation of electromagnetic
interactions in which the electromagnetic field would play the role of a
symmetrizing agent (1)

This, of course, leaves three questions open:

1) How could the electromagnetic field act this way ?

2) What would be a typical value for the «<symmetrization time» ?
3) How could it be possible to measure it ?



A note for future purposes...

Wave-like behaviour should not be identified with ¥ !

] OW
@ w (in Hamilton-Jacobi form for a statistical set)

neVeW(F,t)
at ~2m 2m| (T, 1))

P(F,1)

= 2y 72
iha‘{’(r,t) _ h \Y%

Wm.th \\P(F,t)\zzl, v (F,1)

\P(r t)+V(r,t)¥(r,t)




A note for future purposes...

Schrodinger’s equation can be written non-linearly:

See Holland, “The Quantum Theory of Motion”, Cambridge 1993

2y 72
ih@\P(r,t) :_h \Y%

p- - Y(r,t)+V (r,t)¥(r,t)

If we put: ¥(X,t) =R(X,1)e®™ " " anqd separate Re and Im:

= <

— 2
_ 5 _ (V) +V(r)+Q=E (Hamilton-Jacobi equation)
ot 2m
63—8—'0 -0 (contipuity '0 P =R
. ot equation) | ] =& (PVY —¥VYP)
h® V°R

where: Q=-— = IS called quantum potential

2m



Corinaldesi’s conclusions
Corinaldesi’s idea is that Pauli principle can be violated in short time transients

Conclusions of Corinaldesi’s paper:

The new Schrodinger equation can be expected to yield physical predictions
@jffering from tliose derived from the conventional theory, when times are
involved which are shorter than a characteristic « symimetrization time ».

For charged fermions this would amount to a reformulation of electromagnetic
interactions in which the electromagnetic field would play the role of a
symmetrizing agent (1)

This, of course, leaves three questions open:

1) How could the electromagnetic field act this way ?

2) What would be a typical value for the «<symmetrization time» ?
3) How could it be possible to measure it ?



Reminder of classical electromagnetism

Expression of the Lienard-Wieckert retarded electric field at g.:

E(R, t)_ql(l SR-A(,)) L GR*[(R-B(t,))x B(t)]

R*(1-R- A(t,))°

The rate of work done by g, on g, to order B#is:

Oscillating dipoles: Lienard/Wiechert emitting power p ... =

= pabs :Wl +W2 = ZMaZ

67C

= If via= pemit =
67C

= Total radiated power of the
system proportional to the square
of the dipole moment:

2
HoGy %

CR(L-R-A(t,))°

a(t)

B(t)

2
W, = Ho9:9,8
67C
2 (vxa)
_ luoql2 a c?
6zc 1-— zj
= prad pemlt pab: .
14
1_l:>1 ...........
=
D DA qz)
rad — 67ZC 4 o

a,(t)

B(®)



Retarded differential equations

General characteristics of RDE:

1) Solutions are quantized due to retardation (no scale invariance)

Instead of an algebraic associated equation, you end up with a transcendental
(trigonometric) associated equation — quantized solutions

2) Need for a whole set of past data in the interval [0,t,]

For example: X(t) = X(t —%

— X(t) =acost+Dbsint.. foranyaandb !



Ping-pong motion in hydrogen atom

L. Page and N. Adams, American Journal of Physics 13, 141 (1945)

The infinite proton-mass limit is a singular condition that cannot be
treated perturbatively (it does not allow retardation effects)

Angular momentum is not conserved ! e ™,
(purely under the action of internal forces) "

Results of Lyapunov stability analysis:
Jayme De Luca, Phys. Rev. E 73, 026221 (2006)

1) Resonant orbits are quantized naturally because of delay S
2)  Angular momenta are ~ integer multiples of a constant )

= Ping-pong phenomenon is a non-trivial feature absent in ODE



Ping-pong motion in hydrogen atom
Jayme De Luca, Phys. Rev. E 73, 026221 (2006)

The infinite proton-mass limit is a singular condition that cannot
be treated perturbatively (it does not allow retardation effects)

Action for the electron: J-

\71 = electron velocity

\7 . . R — _rin
V2r = retarded proton velocity ; anr =
r12r
rlzr = electron-proton distance at the retarded time
f#____.._-;u-—-'- YTETH = ----.-""'l-..._'h‘-
255 Beatings of modes
ST T “'. 1t
; leads to a no-radiation
imE 1T ;

(R Poynting condition !



Dirac equation & ZBW (Hestenes’ interpretation)

D. Hestenes, J. Math. Phys. 8, 798-808 (1967), 14, 893-905 (1973), 16, 556-572 (1975), 16, 573-583 (1975),
Am. J. Phys., 47, 399-415 (1979), Foundations of Physics, Vol. 40, 1-54 (2010)

By
ot

with oo +0,0,=20,,

3
Dirac equation: | agme? + Z a;pic | vix,t) =th—(xt)

1=1
d
dt

X

Zitterbewegung: V=

i
=—[H,X]=ca
~[H.X]

> —

ihd—f =—2cp+2Ha = free particle (p & H constant): (;_X =C’H p+ca,e ™"
t

= from which we get:  X(t) 070 H 1e®

with @y = H _ 2mc” Moreover: P —> p—eA(X,t)




From Dirac to Schrodinger equation

Non-relativistic limit of Gordon decomposition:

mpﬁx(p §) —  V=0+W

%al definition of momentum: p =iAa[¥" (V¥P) - (V¥ )¥]

However:

<

—> Vv = charge velocity ; u = velocity of the center of mass



From Dirac to Schrodinger equation

mv: mu® mw?®

Kinetic energy of u, v and w: = +
2 2 2

= if the spin is independent of position: §(F) =S

o _ . ﬁpxg
the contribution of the a—ZBW motion W= ——
mp
1 S%(Vp)* h*%(Vp)?
in the Hamiltonian is: “mw = ( '02) = ( '02) = Q
2 2mp 8mp

See Holland, “The Quantum Theory of Motion”, Cambridge 1993 and Recami and Salesi, PRA 57, 98 (1998)

This shows that, in the Schrdodinger equation, # stands for twice the spin



Non-relativistic hydrogen atom

2
Given the Hamilton-Jacobi equation: — 0> = (V3) +V(r)+Q=E
ot 2m
2 2
where: Q —— h” V'R and: \P()‘(’,t) — R()—(”t)eiS(X’,t)/h
2m R

the spin kinetic energy term Q is responsible for H-atom eigenvalues:

Q(100) = E,, -V (r)| |Q(200) =E, -V (r) |Q(210)=E, -V (r)

ﬁ the spin velocity field w(r) stabilizes only “true” orbitals



Dirac-relativistic hydrogen atom (1)

— gls (F) —iWt/7
Py (F,1) = ( fls(F)je with:W =mc?y1-(Za)” =mc’(1-4 (Za)?)

823 W + mC2 —Zrla, 823 W — mC2 -Zrla
ng = 3 2 ZF 3 € and flS — 3 2 € :
a, \2mcT(3) a, \2mcT(3)
h
2(r)

= (Py), =(p2), =0 and Pro=———(Vx(Vo¥)-10,(Viaw))

with: Wor, W =g, + f2 and Wi, ¥ =29,

—  We average over ZBW and get the same result as for
Schrodinger equation... what 1f we did not average ?



Dirac-relativistic hydrogen atom (11)

r _
Two oscillatory motions determined by W: ¥, (F,t) = (915( )je'Wt/h

fls (F)

Composition of two frequencies:

) (W =2mc’(1-3(Za)?))
ho,., =2mc’

= s . The 2 energies sum up as if the
haw,=Z"a"mc two motions were orthogonal
S EATY PP Toroidal
A possible composition: . )
w pattern



Dirac equation and the zitterbewegung (summary)

1) The motion of the electron is determined by the composition of two

momenta: §= P, + P,.

2) p Is the motion of the center of mass and p,,. is the motion of a massless
charge (moving at speed c)

3) both Schrodinger and Dirac equations (if properly interpreted) agree with this
description: their expectation values correspond to averages on the ZBW frequency

4) Interestingly, the relativistic time-dilation and length-contraction are
determined by the c.0.m. velocity, u.

5) The toroidal motion is responsible of the spin (and might be related to high-
frequency parity-violation effects)



Hic sunt leones

timescales

105s @ Electronic motions

ultra-fast molecular

atomic motions switching (local)

1012 optical phonons

lattice thermalization

10°s @ Aacoustic phonons

domain wall motions Veolume relaxation t = ¢/ v,

heat diffusion

. h | switchi
& thermal expansion ermal swishing

10°s @

thermalization recovery of thermal equilibrium (z ~ C/K)
103s @ - :
with sample environment

l1s @



Back to PEP: two-electron atoms

How to extend this ZBW picture to the case of 2 electrons ?

—
PY =PYW —nv, S(x,x
nc X ( 1 2) Non-classical momentum of

p—— -< —> particle 1 depends on the position
(2) _ p(2 of particle 2 and vice-versa
P =P hVXZS(xl, X, )

—
Action and Reaction Between Moving Charges

AJP, 1945 ===

Leica PAaGE aND NorMaN I. Abpams, Jr.
Yale University, New Haven, Conunecticut

€169 Vi Vi-Ipolis V2 Vg Tioly
Ga=—_{R2>< A )+R;><(-—+

2¢2 7 ¥3 7 r3

Comparing with Eq. (8) we see that the portion
of the linear momentum involving the velocity vy
of the first particle is to be considered as located
at the second particle, and vice versa.

Fi16. 1. Two moving charges.



Is it possible to detect a transient violation
of the Pauli principle at the subattosecond scale ?

John

29
w Templeton
Foundatio




