Exploring the Boundaries of Quantum Mechanics

Hans-Thomas Elze

Università di Pisa

Ontological states with deterministic dynamics?

 \longrightarrow CellularAutomaton picture of QM

FQT2016, Frascati, 19-21 December 2016

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

PROLOGUE for Nikola Buric (1959–2016)

Three questions leading to quantum-classical hybrids (QCH):

Nikola:

What happens if a Hamiltonian, nonlinear, chaotic, or complex system has strictly classical and quantum mechanical parts?

Nikola & Thomas: Can this help with the measurement problem in QM?

Thomas:

Can a quantum system in contact with a classical one act as a <u>seed</u> spreading quantum features in a classical environment?

 \implies We need a <u>consistent</u> description of **QCH** !!

PROLOGUE ... in 2012

PHYSICAL REVIEW A 86, 034104 (2012)

Statistical ensembles in the Hamiltonian formulation of hybrid quantum-classical systems

N. Burić, ^{*} I. Mendaš, D. B. Popović, M. Radonjić, and S. Prvanović Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia (Received 13 August 2012; published 27 September 2012)

PHYSICAL REVIEW A 85, 064101 (2012)

Hybrid quantum-classical models as constrained quantum systems

M. Radonjić, S. Prvanović, and N. Burić[®] Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia (Received 6 April 2012; published 4 June 2012)

PHYSICAL REVIEW A 85, 052109 (2012)

Linear dynamics of quantum-classical hybrids

Hans-Thomas Elze Dipartimento di Fisica "Enrico Fermi," Largo Pontecorvo 3, 1-56127 Pisa, Italia (Received 15 December 2011; published 11 May 2012) On Thu, 11 Jul 2013 18:07:13 +0200 Nikola Buric
 vorte:

Dear Thomas, Yes, I still think that we have proposed a good project. The people that got grants in Serbia all work experimentally on nano-technologies (or at least sell their work as such).

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

```
[ ... ]
It is also very hot in Belgrade but...
All the best,
```

Nikola.

2 - INTRODUCTION

Linearity ...

- Theorem: QM is linear.
 - proofs: E.P. Wigner, V. Bargmann – assumption: dynamics does not change $|\langle \psi' | \psi \rangle|$

proof: T.F. Jordan

- assumption: no influences without interactions

"... that the system we are considering can be described as part of a larger system without interaction with the rest of the larger system."

Experiments testing linearity, test also these assumptions!

3 - INTRODUCTION

... reasoning about the linearity of QM has led us to CA models

based on three ingredients ...

deterministic discrete mechanics – T.D. Lee *et al.* → ex. minimal time / and discrete updating rules

- sampling theory for discrete structures A. Kempf et al.
 → ex. map: CA ↔ continuum QM + corrections
- "oscillator representation" of QM A. Heslot \longrightarrow set $\psi \equiv x + ip$

4 - INTRODUCTION

... the CA models of a particular class show

these quantum features ...

evolution by continuous time Schrödinger equation modified by /-dependent higher-order derivatives w.r.t. time

I-dependent dispersion relation for stationary states

/-dependent conservation laws in 1-to-1 corresp. with QM

multipartite CA obeying Superposition Principle

5 – INTRODUCTION

quantum features ... (cont.)

■ if space discrete as well: Generalized Uncertainty Principle based on Robertson's inequality, ΔAΔB ≥ |⟨[A, B]⟩|/2

define
$$X_{mn} := Im\delta_{mn}$$
, $P_{mn} := -i(\delta_{m,n-1} - \delta_{m,n+1})/2I$
 $\implies \Delta X \Delta P \ge \left| 1 + \frac{l^2}{2} \langle P^2 \rangle \right|$, $\Delta P^2 := \langle P^2 \rangle - \langle P \rangle^2$

 \Rightarrow minimal uncertainty $\Delta X_{min} = I/\sqrt{2}$. [David Gigli]

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

 \implies QM results can be obtained in continuum limit, I
ightarrow 0.

Hamiltonian Cellular Automata (CA) - "bit machines"

- classical CA with denumerable degrees of freedom
- state described by integer valued coordinates x_n^{α}, τ_n and momenta p_n^{α}, π_n

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

 $\alpha \in N_0$: different degrees of freedom $n \in Z$: successive states

• finite differences, $\Delta f_n := f_n - f_{n-1}$

→ no infinitesimals!

The CA Action Principle $\langle \bullet = \bullet =$ Phys. Rev. A 89, 012111 (2014).

integer valued action:

$$\mathcal{S} := \sum_{n} [(p_n^{\alpha} + p_{n-1}^{\alpha})\Delta x_n^{\alpha} + (\pi_n + \pi_{n-1})\Delta \tau_n - \mathcal{A}_n]$$

• Action Principle: $\delta S \stackrel{!}{=} 0 \Rightarrow CA$ updating rules, for $\delta g(f_n) := [g(f_n + \delta f_n) - g(f_n - \delta f_n)]/2, \ \delta f_n \in \mathbb{Z}$, arbitrary *Remarks* ... $\implies R_n \equiv 0$, only harmonic CA consistent. ??

CA equations of motion

•
$$\delta S \stackrel{!}{=} 0 \Rightarrow \text{finite differences e.o.m.:}$$

 $\dot{x}_{n}^{\alpha} = \dot{\tau}_{n} (S_{\alpha\beta} p_{n}^{\beta} + A_{\alpha\beta} x_{n}^{\beta}),$
 $\dot{p}_{n}^{\alpha} = -\dot{\tau}_{n} (S_{\alpha\beta} x_{n}^{\beta} - A_{\alpha\beta} p_{n}^{\beta}),$
 $\dot{\tau}_{n} = c_{n}, \quad \dot{\pi}_{n} = \dot{H}_{n}, \text{ with } \dot{O}_{n} := O_{n+1} - O_{n-1}.$

 \blacksquare e.o.m. time reversal invariant, $(n \mp 1, n) \rightarrow (n \pm 1)$

• $\Rightarrow \dot{\psi}_n^{\alpha} = -i\dot{\tau}_n H_{\alpha\beta}\psi_n^{\beta}$, discrete "Schrödinger equation" with $\hat{H} := \hat{S} + i\hat{A}$, self-adjoint, $\psi_n^{\alpha} := x_n^{\alpha} + ip_n^{\alpha}$, CA "time" n

CA conservation laws

Theorem:

For any
$$\hat{G}$$
 with $[\hat{G}, \hat{H}] = 0$, ex. discrete conservation law:
 $\psi_n^{*\alpha} G_{\alpha\beta} \dot{\psi}_n^{\beta} + \dot{\psi}_n^{*\alpha} G_{\alpha\beta} \psi_n^{\beta} = 0$.
For $\hat{G} = \hat{G}^{\dagger}$ (complex integer) $\rightarrow n$ -indep. two-point fct.:
 $\Re[\psi_n^{*\alpha} G_{\alpha\beta} \psi_{n+1}^{\beta}] = \text{const} \in \mathbb{Z}$.
For $\hat{G} = \hat{1}$: $\Re[\psi_n^{*\alpha} \psi_{n+1}^{\alpha}] = \text{const}$. [cf. $\psi^{*\alpha} \psi^{\alpha} = 1$] Born?
Ex. 1-to-1 correspondence CA \leftrightarrow QM conservation laws.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Consistent anharmonic CA <=== JPCS 631, 012069 (2015).

- action with anharmonic polynomial terms e.g., $(x_n^{\alpha}x_n^{\alpha})^2$ ⇒ consistent CA e.o.m., provided
 - $\delta g_f(f) := [g(f + \delta f) g(f \delta f)]/2\delta f, \, \delta f \in \mathbb{Z}, \, \text{arbitrary}$ generalized by
 - $\delta_f g^{(N)}(f) := \sum_k \gamma_k [g^{(N)}(f + m_k \delta f) g^{(N)}(f m_k \delta f)]/2\delta f,$
- such that $\delta_f \cong d/df$:

 $\delta_f g^{(N)}(f) = \bar{g}^{(N-1)}(f)$, terms $\propto (\delta f)^j$, j > 0 cancel. \implies discrete nonlinear "Schrödinger equation". ??

Towards continuum QM ...

• recall $\psi_n^{\alpha} := x_n^{\alpha} + i p_n^{\alpha}$, CA "time" n

introduce minimal time $I \longrightarrow n \cdot I$, physical time?

 \implies continuum limit, $l \rightarrow 0$, does not work

- integer valuedness \Rightarrow time derivatives diverge!
- construct invertible map:

discrete (integer valued) ↔ continuous (differentiable) - G. 't Hooft

simultaneously continuous & discrete information
 - C.E. Shannon

The Sampling Theorem

Consider square integrable bandlimited functions f:

$$f(t) = (2\pi)^{-1} \int_{-\omega_{max}}^{\omega_{max}} d\omega \ e^{-\iota\omega t} f(\omega) \ , \$$
bandwidth ω_{max} .

Shannon's Theorem:

Given $\{f(t_n)\}\$ for set $\{t_n\}\$ of equidistantly spaced times (spacing π/ω_{max}), function f is obtained for all t by:

 $f(t) = \sum_{n} f(t_{n}) \cdot \frac{\sin[\omega_{max}(t-t_{n})]}{\omega_{max}(t-t_{n})} \quad (\text{reconstruction formula}) \; .$

• CA "time" $n \sim \text{discrete time } t_n := nl \rightarrow \text{continuous time } t$ bandwidth $\omega_{max} := \pi/l$ (Nyquist rate)

Map: discrete CA \leftrightarrow continuous QM

- by Shannon's reconstruction formula ... discrete e.o.m., $\dot{\psi}^{\alpha}_{n} = -i\hat{H}_{\alpha\beta}\psi^{\beta}_{n}$, \longleftrightarrow continuous time "Schrödinger equation": $(\hat{D}_{I} - \hat{D}_{-I})\psi^{\alpha}(t) = 2\sinh(I\partial_{t})\psi^{\alpha}(t) = -iH_{\alpha\beta}\psi^{\beta}(t)$, with $\hat{D}_{T}f(t) := f(t + T)$.
- \blacksquare \Rightarrow *l*-dependent dispersion relation & conservation laws *
- $\blacksquare \Rightarrow I \rightarrow 0$ reproduces corresponding QM results.
- ⇒ different linear reconstructions → same e.o.m. & conservation laws wave fct. "cut-off" changes.

Note: *I*-dependence (continuous description)

I-dependent constants of motion:

from Theorem on discrete conservation laws, for any \hat{G} with $[\hat{G}, \hat{H}] = 0$ and $\hat{G} = \hat{G}^{\dagger}$ (complex integer), $\Rightarrow \Re[\psi^{*\alpha}(t)G_{\alpha\beta}\psi^{\beta}(t+l)] = \text{const} \in \mathbb{Z}$.

I-dependent dispersion relation:

$$\Rightarrow IE_{\alpha} = \arcsin\left(\frac{l\epsilon_{\alpha}}{2}\right) = \frac{l\epsilon_{\alpha}}{2} \left[1 + \left(\frac{l\epsilon_{\alpha}}{2}\right)^2 / 6 + O\left((l\epsilon_{\alpha})^4\right)\right],$$

where $\hat{H} \to \{l\epsilon_{\alpha}\}$ and, thus, $|E_{\alpha}| \le \pi/2l = \omega_{max}/2$.

What goes wrong with anharmonic CA ...

■ by Shannon's *reconstruction formula* ...

discrete $\psi_n \leftrightarrow \psi(t)$, bandlimited $\sim \pi/l$ discrete anharmonic, e.g., $(\psi_n)^2 \leftrightarrow \psi_{(2)}(t) = ??$

•
$$\psi_n = l^{-1} \int \mathrm{d}t \ s_n(t)\psi(t)$$
, $s_n(t) := \mathrm{sinc}[\pi(t/l-n)]$

• $\psi_{(2)}(t) = l^{-2} \iint dt' dt'' [\sum_n s_n(t) s_n(t') s_n(t'')] \psi(t') \psi(t'')$,

 $\rightarrow\,$ correctly bandlimited, but nonlocal in time .

■ \Rightarrow anharmonic CA not describable in a local continuous way \Rightarrow <u>no</u> *I*-dep. CA based <u>nonlinear</u> Schrödinger equation.

The formal solution of discrete CA e.o.m.:

• recall: $\partial_t \psi(t) = -i\hat{H}\psi(t) \Rightarrow \psi(t) = e^{-i\hat{H}t}\psi(0)$. • here: $\dot{\psi}_n = \psi_{n+1} - \psi_{n-1} = -i\hat{H}\psi_n \Rightarrow$ $\psi_n = \frac{1}{2 \csc \hat{\phi}} \left(\mathrm{e}^{-in\hat{\phi}} [\mathrm{e}^{i\hat{\phi}} \psi_0 + \psi_1] + (-1)^n \mathrm{e}^{in\hat{\phi}} [\mathrm{e}^{-i\hat{\phi}} \psi_0 - \psi_1] \right) \,,$ where $2\sin\hat{\phi} := \hat{H} \Rightarrow -2 < |\epsilon_{\alpha}| < 2$. \rightarrow Ex. (in)finite sets of such symmetric integer \hat{H} 's. **note:** solutions exponential for $n \to \infty$, iff $\psi_1 \equiv \psi_0$, ?? $\implies \psi_n = (e^{-in\phi} + O(1/n))\psi_0$. Let $l \equiv t_{Planck}$, even for $n \sim 10^{10}$: $t \equiv n t_{Planck} \sim 10^{-34} s$.

G 't Hooft The Cellular Automaton Interpretation of QM arXiv:1405.1548

Two-state systems:

• note: $1/l = t_{Planck}^{-1}$ sets energy scale for Hamiltonians bounded by $-2/l \leq \epsilon_{\alpha} \leq 2/l$. • now: $\psi_n = (e^{-in\phi} + O(1/n))\psi_0$, with $\phi = \arcsin \frac{\hat{H}}{2} := \arcsin \frac{\vec{m} \cdot \vec{\sigma}}{2}$, $\vec{m} \in \mathbf{Z}_3$, $\vec{\sigma}$: Pauli's $\sigma_{1,2,3}$ $\Rightarrow \hat{H}^2 = |\vec{m}|^2$, eigenvalues $\pm |\vec{m}|$, bounded by $|\vec{m}| \stackrel{!}{\leq} 2$ $\Rightarrow \phi = |\vec{m}|^{-1} \arcsin \frac{|\vec{m}|}{2} \cdot \hat{H} =: \hat{H}' = O(1)$ • with $t \equiv nt_{Planck}$: $\exp(-in\phi) = \exp(-it[\hat{H}'/t_{Planck}])$!?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

Magnons (cf. Peierls '56, Feynman '74):

 Consider "ferromagnet" of N two-state components. e.g., $\uparrow_1 \uparrow_2 \downarrow_3 \ldots \downarrow_{N-1} \uparrow_N$, periodic b.c. (1-d, ..., 3-d c.l.) • $\hat{H} + N := -\sum_{n=1}^{N} \vec{\sigma}_n \cdot \vec{\sigma}_{n+1} + N = -2\sum_n (\hat{P}_{n,n+1} - 1)$ \rightarrow totally symm. groundstate, $E_0 = \langle c.s. | \hat{H} | c.s. \rangle = -N$. • lowest exc. state, $\psi = \sum_{n} a_n \uparrow_1 \uparrow_2 \ldots \downarrow_n \ldots \uparrow_N$ i.e., "superposition + dephasing", $a_n \equiv e^{i\delta n}$, $a_{N+1} \stackrel{!}{=} a_1$ $\rightarrow \delta = 2\pi i/N$, $i \in \mathbb{Z}$, -N/2 < i < N/2.

Magnons ... (cont.)

■ dispersion relation from $Ea_n = -2(a_{n+1} + a_{n-1} - 2a_n)$, ⇒ energy band: $E = 4(1 - \cos \delta)$, $\delta = 2\pi i/N$.

• set $\delta \equiv k I$, momentum of plane wave, $k = rac{2\pi j}{NI}$

 \longrightarrow long wavelength limit: $E \approx 2k^2 l^2 \equiv \frac{k^2}{2\mu} = 2(\frac{2\pi j}{N})^2$

• note: dimensionfull energy is $E_j := E/I = 2\frac{(2\pi j)^2}{IN^2}$.

• \implies "coherent superposition + dephasing" (NR model!) reduce Planck scale energies $\propto N^{-2}$.

19 - CONCLUSIONS

- Common *I*-dependent aspects of natural CA & QM:
 eqs. of motion, conservation laws; observables, admiss. *Ĥ* multipartite CA <=== Int.J.Quant.Info. 14(4), 1640001 (2016)
- $\blacksquare Map: CA \leftrightarrow QM \text{ based on linear Sampling Theory}$
 - ... fails for nonlinear CA \longrightarrow alternatives ?

Desiderata:

random / nonunitary aspects ? better: ontological models !!
relativistic / QFT extension ??

Discrete Poisson brackets & CA observables:

- recall: only variational derivatives for discrete variables $\delta g(f) := [g(f + \delta f) g(f \delta f)]/2$, $f, \delta f \in \mathbb{Z}$.
- $\bullet \rightarrow \mathsf{define}: \ \{A,B\} := \delta_{x^{\alpha}} A \ \delta_{p^{\alpha}} B \delta_{x^{\alpha}} B \ \delta_{p^{\alpha}} A \ .$
- for constant, linear, or quadratic polynomials A, B, variational derivatives independent of δ_x, δ_p and bracket corresponds to ordinary Poisson bracket, in <u>all</u> respects.
- \Rightarrow CA observables can be chosen as real quadratic forms in $\psi_n^{\alpha} := x_n^{\alpha} + ip_n^{\alpha}$; a closed algebra endowed with $\{,\}$.

E.g.,
$$\dot{\psi}^{lpha} = \{\psi^{lpha}, \mathcal{H}\}$$
, with $\mathcal{H} := \psi^{*lpha} H_{lpha eta} \psi^{eta}/2$.