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PROLOGUE ... at about 2011

Three questions leading to quantum-classical hybrids (QCH):

m Nikola:
What happens if a Hamiltonian, nonlinear, chaotic, or complex
system has strictly classical and quantum mechanical parts?

m Nikola & Thomas:
Can this help with the measurement problem in QM?

m Thomas:
Can a quantum system in contact with a classical one act as a
seed spreading quantum features in a classical environment?

— We need a consistent description of QCH !!
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PROLOGUE ... in 2013

On Thu, 11 Jul 2013 18:07:13 40200 Nikola Buric <buric@ipb.ac.rs>
wrote:

Dear Thomas, Yes, | still think that we have proposed a good project.
The people that got grants in Serbia all work experimentally on
nano-technologies ( or at least sell their work as such).

[ ]

It is also very hot in Belgrade but...
All the best,
Nikola.



2 — INTRODUCTION

m Def.: linearity <= dynamics maps states linearly on states.

m Theorem: QM is linear.

proofs: E.P. Wigner, V. Bargmann
— assumption: dynamics does not change |(¢/|¢)]

proof: T.F. Jordan
— assumption: no influences without interactions

. that the system we are considering can be described as part of a
larger system without interaction with the rest of the larger system.”

m Experiments testing linearity, test also these assumptions!



3 — INTRODUCTION

. reasoning about the linearity of QM has led us to CA models

based on three ingredients ...

m deterministic discrete mechanics — T.D. Lee et al.

— ex. minimal time / and discrete updating rules

m sampling theory for discrete structures — A. Kempf et al.
— ex. map: CA < continuum QM + corrections

m “oscillator representation” of QM — A. Heslot

— setYy=x+1Iip



4 — INTRODUCTION

. the CA models of a particular class show

these quantum features ...

m evolution by continuous time Schrédinger equation modified by
I-dependent higher-order derivatives w.r.t. time

m /-dependent dispersion relation for stationary states
m /-dependent conservation laws in 1-to-1 corresp. with QM

m multipartite CA obeying Superposition Principle



5 — INTRODUCTION

quantum features ... (cont.)

m if space discrete as well: Generalized Uncertainty Principle
based on Robertson’s inequality, AAAB > |([A, B])|/2

NG K — i - (=g et — B e i 2

= AXAP>‘1+ (PY| , AP = (P?) — (P)?

= minimal uncertainty AXpi» = //v/2 . [David Gigli]

= QM results can be obtained in continuum limit, / = 0.



6 — DISCRETE HAMILTONIAN MECHANICS

Hamiltonian Cellular Automata (CA) — “bit machines”

m classical CA with denumerable degrees of freedom

m state described by integer valued coordinates x{', 7, and
momenta pS, T,

a € Ng: different degrees of freedom
n € Z: successive states

m finite differences, Af, .= f, — f,_1

—— no infinitesimals !



7 — DISCRETE HAMILTONIAN MECHANICS

The CA Action Principle < Phys. Rev. A 89, 012111 (2014).

m Ay = Ary(Hy + Hyo1) + coma

Hpy := 15,5(p2p8 + x2xB) + Aapp2xP + Ra(x,p)

const. c,, sym. S= {Sap}, antisym. A= {A.p}, remainder R, .
m integer valued action:

S =2 2l(py + Pa1) Axg + (mn + Ta1) AT, — An]
m Action Principle: S 20 = CA updating rules,

for 0g(fn) := [g(fa + 6fn) — g(fa — 611)]/2, 0f, € Z, arbitrary

Remarks ... = R, =0, only harmonic CA consistent. 77



8 — DISCRETE HAMILTONIAN MECHANICS

CA equations of motion

m 0S ~ 0 = finite differences e.o.m.:

X8 = Tn(Sapph + Aagxh)
Pn = _7'-,7(5&/3)(,/,3 _Aaﬂpﬁ) '

Th = Cp, Tpn = H,, with O, =0, —0,_1.

m e.o.m. time reversal invariant, (n¥1,n) — (n+1)

n— @Z}? = —i%nHage,/)ﬁ, discrete “Schrédinger equation”

with H:= 8§ +iA , self-adjoint, ¥§ := x5 +ips, CA “time" n



9 — DISCRETE HAMILTONIAN MECHANICS

CA conservation laws

m Theorem:

For any G with [G,H] =0, ex. discrete conservation law:
Y3 Gagth + 3" Gagthh =0 .

For G = G' (complex integer) — n-indep. two-point fct.:
%[1&;‘1 Gaﬁ%éﬂ] = const € Z .

For G =1: R[pr2p2, 1| = const . [cf. **p* =1] Born?

m Ex. 1-to-1 correspondence CA <+ QM conservation laws.



10 — DISCRETE HAMILTONIAN MECHANICS

Consistent anharmonic CA JPCS 631, 012069 (2015) .

m action with anharmonic polynomial terms — e.g., (x¥x%)?

— consistent CA e.o.m., provided

dgr(f) == [g(f + 0f) — g(f — 0f)]/25f, 6f € Z, arbitrary

generalized by

3rgM(F) = 2 g™ (Ff + mor) — gM(f — meof)]/26f,
m such that 6; =d/df :

5rgM(F) = gN=1(F) , terms o (6F), j > 0 cancel.

—> discrete nonlinear “Schrédinger equation”. 77



11 — SAMPLING THEORY

Towards continuum QM ...

m recall ¥ == x5 +ipy , CA “time” n

introduce minimal time /| — n -/, physical time?

= continuum limit, / — 0, does not work

— integer valuedness =- time derivatives diverge!
m construct invertible map:

discrete (integer valued) <— continuous (differentiable)
- G. 't Hooft

m simultaneously continuous & discrete information
— C.E. Shannon



12 — SAMPLING THEORY

The Sampling Theorem

m Consider square integrable bandlimited functions f :

f(t)=(2m)t fw'"a’;x dw e_i“’t?(w) , bandwidth wmay -

m Shannon’s Theorem:
Given {f(tn)} for set {t,} of equidistantly spaced times

(spacing 7/wmax), function f is obtained for all t by:

f(t)y=>,f(ta) - sinfwmax(t—tn)] (reconstruction formula) .

Wmax(tf tn)

m CA “time’ n ~ discrete time t, := n/ — continuous time t
bandwidth wpmax 1= 7// (Nyquist rate)



13 — SAMPLING THEORY

Map: discrete CA <> continuous QM

m by Shannon’s reconstruction formula ...
discrete e.o.m., wﬁ = —il:laﬁwﬁ ,
<— continuous time “Schrddinger equation™
(Dr — D_))pe(t) = 2sinh(19, )1 (t) = —iHap??(t)
with Drf(t) == f(t+ T).
m = /-dependent dispersion relation & conservation laws . *
m = [ — 0 reproduces corresponding QM results .

m = different linear reconstructions — same e.o.m. &
conservation laws — wave fct. “cut-off” changes.



13* — SAMPLING THEORY

Note: /-dependence (continuous description)

m /-dependent constants of motion:
from Theorem on discrete conservation laws,
for any G with [G, ] = 0 and G = GT (complex integer),
= R[*(t)Gapp?(t +1)] = const € Z .

m /-dependent dispersion relation:
= IE, = arcsin(X) = L [1 + (%9)2/6 + O((lea)*)]
where H — {ley} and, thus, |Ey| < 7/2] = Wimax/2 -



14 — SAMPLING THEORY

What goes wrong with anharmonic CA ...

m by Shannon's reconstruction formula ...

discrete ¢, +— (t), bandlimited ~ 7 //

discrete anharmonic, e.g., (¥n)> «— W)(t) = 77
m Y, =171 [dt sy(t)y(t), sn(t) := sinc[r(t/] — n)]
m Ye)(t) = 72 [ dt'dt”[ 30, sn(t)sa(t)sn(t")] D (¢)e(t") ,

— correctly bandlimited, but nonlocal in time.

m = anharmonic CA not describable in a local continuous way
= no /-dep. CA based nonlinear Schrédinger equation .



15 — NOTES & EXAMPLES

m recall: 9p(t) = —ifw(t) = ¥(t) = e Fty(0).
m here: ¢, = Yat1 — Y1 = —ify, =
Yo = 2 (e m[eBpg + ] + (—1)"eb[e= Ty, — 4n]) |

" 2cos¢
where 25inq§ =H = —2<le<2. !

— Ex. (in)finite sets of such symmetric integer H'’s.

m note: solutions exponential for n — oo, iff Y3 =1y, 77

= ¢n= (7" + O(1/n))o .

010 .

Let /| = tpiapck » even for n ~ 1 Tt = ntppanck ~ 10~ 3s .



15* — INTRODUCTION

sub-micro micro sub-micro
macro macro
states templates  gtates states states
—_—
a) | A




16 — NOTES & EXAMPLES

Two-state systems:

m note: 1// = t;énck sets energy scale for Hamiltonians
bounded by —2// < e, <2/I.
m now: ¢, = (67 + O(1/n))vo , with

g = arcsin 5%, m € Z3, 0: Pauli's 01233

¢ = arcsin
!
= H? = |m|? eigenvalues ]ﬁ7| bounded by |m| <2

= ¢ = |m| ! arcsin @ H = 0(1) .

= with £ = ntpjanck: exp(—ing) = eXp(_it[’l:l//tPlanck]) 1?



17 — NOTES & EXAMPLES

Magnons (cf. Peierls '56, Feynman '74):

m Consider “ferromagnet” of NV two-state components,

eg., T1T2ds ... In—1 Tw, periodic b.c. (1-d, ..., 3-d c.l.)

m A4 N=—SN G, G +N=-25 (Prn1—1)

— totally symm. groundstate, Ey = (c.s.|H|c.s.) = —N .

m lowest exc. state, vy => _a, T1T2 ... Lo ... T,

;i !
ion ., an4l = a1

— §=2mj/N, jeZ, —N/2<j<N/2.

i.e., “superposition + dephasing”, a, =e



18 — NOTES & EXAMPLES

Magnons ... (cont.)

m dispersion relation from Ea, = —2(ap41 + ap—1 — 2a,) ,
— energy band: E =4(1 —cosd), 6 =2mj/N.

m set § = k/ , momentum of plane wave, kK = zNif

— long wavelength limit: E ~ 2k?/? = % = 2(%’”)2
(2mj)?
IN2 -

m note: dimensionfull energy is Ej := E// = 2

m —> “coherent superposition + dephasing” (NR model!)

reduce Planck scale energies oc N2 .



19 — CONCLUSIONS

m Common /-dependent aspects of natural CA & QM:
eqs. of motion, conservation laws; observables, admiss. H

multipartite CA  <e=e= Int.J.Quant.Info. 14(4), 1640001 (2016)

m Map: CA + QM based on linear Sampling Theory

... fails for nonlinear CA —— alternatives ?

m Desiderata:

random / nonunitary aspects ? better: ontological models !!

relativistic / QF T extension 77



MISCELLANEOUS

Discrete Poisson brackets & CA observables:

m recall: only variational derivatives for discrete variables
og(f) .= [g(f +of) —g(f —of)]/2, f,of €Z.

m — define: {A, B} = 6xaA 0paB — 50 B GpaA

m for constant, linear, or quadratic polynomials A, B, variational
derivatives independent of 0, d, and bracket corresponds to
ordinary Poisson bracket, in all respects.

m = CA observables can be chosen as real quadratic forms in
Y& = x + ip% ; a closed algebra endowed with { , } .

Eg., o= {4 H}, with H = **H,0%/2.



