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The Marshall et al. Optomechanical System

The Marshall et al. optomechanical setup has the following structure:

[W. Marshall, C. Simon, R. Penrose and D. Bouwmeester, Towards
quantum superpositions of a mirror, Phys. Rev. Lett. 91, 130401 (2003)]
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Previous Results - State of the System

The Marshall et al. system is described by the Hamiltonian:

Ĥ = ~ωc
(
ĉ†AĉA + ĉ†B ĉB

)
+ ~Ωb̂†b̂− ~gĉ†AĉA

(
b̂+ b̂†

)
The initial state of the whole system is:

|ψ (0)〉 =
1√
2

(|A〉+ |B〉) |β〉

at a generic instant:

|ψ (t)〉 =
1√
2
eik

2θ(t)e−iIm[α∗(t)βe−iΩt]|A〉|βe−iΩt + α (t)〉

+
1√
2
|B〉|βe−iΩt〉

with k = g
Ω , θ (t) ≡ Ωt− sin (Ωt) and α (t) ≡ −k

(
e−iΩt − 1

)
.

Generally, is a Schrödinger cat state; however, at t = 2πn
Ω , no

entanglement between photon and mirror.
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Previous Results - Visibility of Interference

Assume the mirror is in a thermal mixture of coherent states:

ρAB =

∫ +∞

−∞

d2β

2πn̄
Trn [〈A|Ψ〉〈Ψ|B〉] e−

|β|2
n̄

The visibility of interference is:

νQM = |ρAB | =
1

2
e−(2n̄+1)k2[1−cos(τ)]

where τ = Ωt and n̄ = 1/
(
e

~Ω
kBT − 1

)
.

0.00 0.01 0.02 0.03 0.04 0.05
Τ

0.1

0.2

0.3

0.4

0.5
ΝQM

6.23 6.24 6.25 6.26 6.27 6.28
Τ

0.1

0.2

0.3

0.4

0.5
ΝQM

Visibility of interference for k = 1 and Ω = 2π · 500Hz. Blue and purple line refer respectively to T = 10−4 and T = 10−3 K.
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Hybrid Theory - Essentials

A hybrid theory aims to study systems where a classical and quantum
sector coexist and interact.

Every generic quantum state |ψ〉 ∈ H can be expanded in the
“oscillator representation”:

|ψ〉 =
∑
j

(Xj + iPj)√
2~

|j〉

How do we treat observables in this framework?

〈ψ|Ô|ψ〉 =
1

2~
∑
i,j

(Xi − iPi) (Xj + iPj) 〈i|Ô|j〉

We can also define a Poisson bracket:

{f, g}QM =
∑
i

(
∂f

∂Xi

∂g

∂Pi
− ∂g

∂Xi

∂f

∂Pi

)
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Hybrid Hamiltonian

We use the hybrid approach to study the Marshall et al. system
considering the mirror as a classical rather than quantum object.

The quantum and classical sector are described by:

ĤQM = ~ωcĉ†AĉA + ~ωcĉ†B ĉB , HCL =
p2

2M
+
Mω2

m

2
x2

and the hybrid coupling by:

Î = −~g̃xĉ†AĉA
Introducing “oscillator representation”, the full hybrid Hamiltonian:

H =
p2

2M
+
Mω2

m

2
x2 +

ωc
2

(
X2
A + P 2

A

)
+

+
ωc
2

(
X2
B + P 2

B

)
+
g̃

2
x
(
X2
A + P 2

A

)

6 / 20



Hybrid Density Matrix

Solving the equation of motion following by the Hamiltonian we can
obtain the off-diagonal matrix element of the photon reduced density
operator:

ρAB (t) =
1

2~
(XA + iPA) (XB − iPB)

=
1

2
exp{iωct} exp

[
−iΩt− iAmg̃

Ω
[cos (Ωt+ φm)− cos (φm)]

]

Unlike in purely quantum case, off-diagonal matrix element is just a
phase.

=⇒if mirror initial conditions consist in one fixed point of the
classical phase space, there is no decoherence (interference effects of
the photon are preserved by interaction with the classical mirror).
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Thermal Average

Next, we assume more realistically that only a thermal distribution of
mirror initial conditions in classical phase space is known:

f (x0, p0, T ) =
βΩ

2π
exp

[
−β
(
p2

0

2M
+
Mω2

mx
2
0

2

)]
where β ≡ 1

kBT
.

Adopting this distribution, the averaged off-diagonal element becomes:

< ρAB >f=
1

2
e−ik

2θ(t) exp{−z2 [1− cos (Ωt)]}

with z =
√

g̃2

Mω4
mβ

, and θ (t) ≡ Ωt− sin (Ωt).

=⇒SAME RESULT AS FOR A QUANTUM MIRROR!
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Final Comparison

Visibilities of interference in the two cases:

νCL = 1
2e
−z2

CL[1−cos(Ωt)], z2
CL = 2kBT~Ω k2

νQM = 1
2e
−z2

QM [1−cos(Ωt)], z2
QM = (2n̄+ 1) k2

The following relation subsists:

zQM = ξ(χ)zCL , ξ(χ) =
χ

eχ + 1
+
χ

2
, χ(Ω, T ) =

~Ω

kBT
.
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Conclusions and Perspectives

Our study of the visibility of interference both in a purely quantum and
hybrid descriptions yields the following results:

in hybrid theory, if the mirror initial conditions consist in one
fixed point of classical phase space, there is no decoherence
and the photon remains a pure state.

in hybrid theory, mirror induced decoherence appears if mirror initial
conditions are statistically distributed. Adopting a thermal
distribution, we obtain the same result as in purely QM
description.
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Hamiltonian: qualitative derivation

The interaction term represents the mechanical work of the radiation
pressure on the mirror displacement.

Accordingly, apart some constants, it can be expressed as:

Hint = PS (∆x) ,

but:

∆x ∼
(
b̂+ b̂†

)
;

P ∼ I ∼ ĉ†AĉA;

Finally:

Ĥint = ~gĉ†AĉA
(
b̂+ b̂†

)
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Hamiltonian: semi-quantitative derivation

The interaction between mirror and photon consists in a displacement of
the former, and therefore in a variation of the photon frequency:

Ĥint = ~ (δωc) ĉ
†
AĉA

The variation of photon frequency is:

δωc =
∂ωc
∂L

δL = −ωc
L
δL

where we have used ωc = 2πc
L .

Finally:

Ĥint = ~gĉ†AĉA
(
b̂+ b̂†

)
[S.Mancini, V.I. Man’ko and P.Tombesi, Ponderomotive control of
quantum macroscopic coherence (1997)]
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Coherent state

We define coherent state the eigenstates of the destruction operator.
A coherent state has the following form:

|β〉 = e−
|β|2

2

∞∑
n=0

βn√
n!
|n〉

We list some of the most important properties of a coherent state:

the ground state of a driven harmonic oscillator is a coherent state;

in a coherent state we have ∆x∆p = ~
2 ;

the temporal evolution of coherent state is a coherent state;

in configuration space a coherent state is represented by a gaussian.

According to the last three properties coherent states are considered
as the “most classical” quantum states.
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Temporal Evolution

The initial state of the system is:

|ψ(0)〉 =
1√
2

(
|1〉A|0〉B + |0〉A|1〉B

)
|β〉 ,

Employing the following time evolution operator:

e−
i
~ Ĥt =e−ik

2(ĉ†AĉA)
2
(e−iΩt+iΩt−1)e−kĉ

†
AĉA(e−iΩt−1)b̂† ·

e−kĉ
†
AĉA(e−iΩt−1)b̂e−iΩb̂

†b̂te−iωcĉ
†
AĉAte−iωcĉ

†
B ĉBt ,

We obtain the state at a generic instant:

|ψ (t)〉 =
1√
2
eik

2θ(t)e−iIm(α∗βe−iΩt)|1〉A|0〉B |βe−iΩt + α (t)〉

+
1√
2
|0〉A|1〉B |βe−iΩt〉 ,
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Where do Poisson brackets come from?

We write the inner product of H in oscillator representation:

〈ψ|φ〉 =
1

2~

N∑
i,j=1

(Xψ,i − iPψ,i) (Xφ,j + iPφ,j) 〈i|j〉 =

≡ 1

2~

[
ψ̄T ĜMφ̄+ iψ̄T Ω̂Mφ̄

]
,

where:

ĜM ≡
(

ÎN 0̂

0̂ ÎN

)
, Ω̂M ≡

(
0̂ ÎN
−ÎN 0̂

)
.

Accordingly, we introduce Poisson bracket as:

{f, g}QM =
∑
i,j

Ωij
∂f

∂X̄i

∂f

∂X̄j
,

in which X̄i = (X1, ..., XN , P1, ..., PN ).
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Hybrid ensemble

We describe a quantum-classical hybrid ensemble by a normalized,
real-valued, positive semi-definite, possibly time-dependent regular
function on X:

ρ (xj , pj , Xi, Pi) =
1

2~

N∑
n,m=1

ρmn (Xm − iPm) (Xn + iPn) ,

where ρmn (xj , pj) = 〈m|ρ̂ (xj , pj) |n〉.

The temporal evolution of this function is governed by the equation:

∂ρ

∂t
= {ρ,H (xj , pj , Xi, Pi)}X ,

which retains the form of the Liouville equation.
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Equation of Motion

Full hybrid Hamiltonian allows to obtain the equations of motion which
encode the dynamical information of the system:

∂x

∂t
={x,H}X =

p

M
, (1)

∂p

∂t
={p,H}X = −Mω2

mx+
g̃

2

(
X2
A + P 2

A

)
, (2)

∂XA

∂t
={XA, H}X = ωcPA − g̃xPA , (3)

∂PA
∂t

={PA, H}X = −ωcXA + g̃xXA , (4)

∂XB

∂t
={XB , H}X = ωcPB , (5)

∂PB
∂t

={PB , H}X = −ωcXB . (6)
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Solution of equations

The equations of motion can be solved analytically:

x (t) = Am sin [Ωt+ φm]− ~g̃
2Mω2

m

, (7)

p (t) = ΩMAm cos [Ωt+ φm] , (8)

XA (t) =
√
~ cos{Ωt+

Amg̃

Ω
[cos (Ωt+ φm)− cos [φm]]} , (9)

PA (t) = −
√
~ sin{Ωt+

Amg̃

Ω
[cos (Ωt+ φm)− cos [φm]]} , (10)

XB (t) =
√
~ cos (ωct) , (11)

PB (t) = −
√
~ sin (ωct) , (12)
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Boundary Conditions

The constants Am and φm are related to the initial conditions of the
mirror.

If we define:

x (t = 0) = Am sin (φm)− ~g̃
2Mω2

m

≡ x0 ,

and:
p (t = 0) = AmΩM cos (φm) ≡ p0 .

we have:

Am (x0, p0) =
p0

ΩM

1

cos
(

arctan
[
ΩM x0

p0
+ ~g̃

2p0Ω

]) ,

and:

φm (x0, p0) = arctan

[
1

p0

(
ΩMx0 +

~g̃
2Ω

)]
.
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Decoherence timescales

The decrease of the interference is quantified by the decoherence
timescale:

tHD =

√
2~β
Ωk2

with k =
~ω2

c

2ML2ω3
m

.

In the following table we list estimates of tHD for different values of the
temperature:

Temperature [K] tHD [sec] tQM [sec]
10−3 2, 15 · 10−6 3, 01 · 10−6

10−4 0, 68 · 10−5 0, 98 · 10−5

10−5 2, 15 · 10−5 3, 13 · 10−5

10−6 0, 68 · 10−4 0, 96 · 10−4

(13)

where tQM = 1
kΩ
√
n̄+1

.
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