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As	physicists	we	are	accustomed	to	putting	to	stringent	tests all	
the	basic	principles	of	our	science.	

The	Pauli	Exclusion	Principle	is	an	exception:	it	is	believed	to	be	
valid	on	the	basis	of	extensive	and	vaguely	defined	
multiparticle	phenomena	rather	than	on	a	controlled	few-
particles	basis.	

But	strictly	controlled	few-particle	tests	are	just	what	we	need	
to	detect	minute	violations	of	the	principle.	

This	is	easier	said	than	done.
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Experimental	studies	of	the	Pauli	Exclusion	Principle	(PEP	for	
short)	bring	us	closer	than	ever	to	the	conceptual	boundaries	of	
physics,	and	to	the	very	essence	of	science.

First	of	all,	an	experimental	study	of	PEP	means	carrying	out	some	form	of	test	to	
detect	possible	(small?	large?)	violations.

In	this	context	we	have	first	to	ask	some	important	questions

• What	is	it	that	we	study?	(is	it	a	property	of	individual	particles,	or	is	it	actually	
something	else?)

• Is	there	a	mathematical	framework	that	predicts	violations?	And	if	there	is	none,	
does	it	make	sense	to	search	for	violations?	

(see	Matteo	Morganti’s	talk	for	some	partial	answers	...	)

It	may	seem	strange	that	physicists	ask	this	kind	of	questions,	but	tests	of	PEP	have	
always	been	controversial.
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Now	let’s	consider	an	unconventional	view	of	PEP	violation,	one	
that	appears	to	be	totally	disconnected	from	QFT.
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A new class of identical particles which may exhibit both Bose and Fermi statistics with respective
probabilities pb and pf is introduced. Such an uncertainty may be either an intrinsic property of a
particle or can be viewed as an “experimental uncertainty.” Statistical equivalence of such particles
and particles obeying parastatistics of infinite order is shown. Generalized statistical distributions are
derived, and statistical and thermodynamical properties of an ideal gas of the particles are investigated.
The physical nature of such particles and the implications of this investigation for the statistics of
extremal black holes are discussed. [S0031-9007(97)03281-X]
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Historically, the first attempt to generalize quantum
Bose and Fermi statistics was made by Gentile [1], who
proposed statistics in which up to k particles are allowed to
occupy a single quantum state (instead of one for Fermi and
infinitely many for Bose cases). Further generalizations
were mostly on deformations of commutation relations
for particle creation and annihilation operators [2–5]. A
special case (the so-called “infinite” statistics) is rather
interesting in that the particles which obey this statistics
have non-negative square norms [6] for jqj2 # 1, while the
observables have nonlocal properties. The commutation
relations are simply [4,5]

aia
y
j 2 qay

j ai ≠ dij , (1)

where q is either a real or complex parameter, ay
j and aj are

the particle creation and annihilation operators, and dij is
the Kronecker’s delta. Stimulated by recent experimental
observation of the fractional quantum Hall effect [7]
in a two-dimensional electron gas, various nontraditional
statistics have been proposed [8–11]. Most of them
are based on generalizations of particle wave-function
permutation symmetries. The concept of anyons, which
are charge carriers in the fractional quantum Hall effect, is
essentially two dimensional [8]. However, in the strong
magnetic field with fluxes antiparallel to the ambient
field and in the lowest Landau level, anyons are shown
[12] to obey the one dimensional (though valid in any
dimensions) Haldane’s exclusion principle [11]. Finally,
the equivalence of the anyon statistics (in the above case)
and q-on statistics, Eq. (1), with q ≠ eiap (a is the
measure of Haldane’syPauli blocking and ap is exactly
the wave-function phase shift due to permutation of any
two particles) was proven [13] via the properties of the N-
anyon permutation group.
Statistical and thermodynamical properties of systems

of particles obeying fractional statistics (i.e., complex
q such as jqj2 ≠ 1) were extensively studied in the
last several years [10,12,14], whereas these properties of
particles with real q, 21 , q , 1, were not investigated
(with some special exceptions [15,16]). One should

mention a special case of the infinite statistics [4] with
q ≠ 0 which was suggested [3] to be equivalent to the
statistics of nonidentical particles (quantum Boltzmann
statistics). One should note here that it was also recently
suggested [17] that extremal black holes should obey such
a statistics. This issue will be discussed below.
In this work we investigate a system of particles obey-

ing ambiguous statistics which are (statistically) equivalent
to those obeying the q-deformed statistics of real q. The
partition function of a free gas of such particles, however,
differs from that of a free q-on gas. The latter is shown
[16] to be independent of the deformation parameter q.
In fact, the second quantized approach used in [16] does
not take into account the dynamics of the internal degrees
of freedom. Thus, the q-ons are always distinguishable
particles. Our model, however, is (probably) identical to
the case when the internal degrees of freedom are in the
thermodynamic equilibrium with the external degrees of
freedom (at least for q ≠ 0), and thus the particles are not
completely distinguishable. (Note, the particles are indis-
tinguishable provided they are in the same internal state,
even if they have an infinite number of internal degrees of
freedom.) Consequently, the quantum Boltzmann distri-
bution (q ≠ 0) is different from the classical Boltzmann.
Unlike the theories mentioned above, we admit only

“primary” Bose-Einstein and Fermi-Dirac statistics as ex-
isting. Assume now that a particle is neither a pure boson
or pure fermion. Let another particle, which interacts with
the first one, play the role of an external observer. During
the interaction, it performs a measurement at the first par-
ticle and identifies it as either a boson or a fermion with
respective probabilities pb and pf . According to the result
of this measurement, it interacts with the first particle as if
the last is a boson or fermion, respectively. The first par-
ticle, of course, is the observer for the second particle, thus
the process is symmetric. Note that pb 1 pf is not nec-
essarily equal to one, and, if not, it means that the sec-
ond particle (observer) does not detect the first particle.
The probability of this is 1 2 pb 2 pf . The “statistical
uncertainty” introduced above may be either the intrinsic

0031-9007y97y78(22)y4147(4)$10.00 © 1997 The American Physical Society 4147
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property of a particle itself or the “experimental uncer-
tainty” of the measurement process. This concept of “im-
perfect measurement” is similar to that proposed in order
to resolve the causality paradox in superluminal particle
(tachyon) systems [18]. This model can be interpreted
in another manner. Assume a particle can oscillate be-
tween two types of statistics, then the model we propose
represents a system of such particles averaged over time
scales much larger than the oscillation period. The proba-
bilities pb and pf , thus, are those portions of time dur-
ing which a particle resides in a Fermi- or Bose-type state.
The model of this kind is relevant to systems of elementary
particles which have mutual supersymmetrical partners
(e.g., a photon and photino, etc.) when transitions between
these supersymmetrical states can occur [19]. With some
modifications, this model can also be applied to systems of
particles with changing flavor, e.g., quarks, gluons, neutri-
nos, etc.
There is a conjectured relation between the particles of

the ambiguous statistical type and the q-deformed infinite
statistics. Let bj and by

j be the annihilation and creation
operators for such a particle. The particle exhibit bosonic
properties with the probability pb and fermionic ones with
pf . Thus, a bilinear commutation relation for bj and by

j is
of boson type with the probability p2

b , of fermion type with
the probability p2

f , and the two particles are nonidentical
with the probability 2pbpf ; that is, interchange of their
positions results in another wave function, i.e., bib

y
j ≠ dij.

We write

sp2

b 1 p2

f 1 2pbpfdbib
y
j 2 sp2

b 2 p2

fdby
j bi

≠ sp2

b 1 p2

f 1 2pbpfddij .

(2)

This equation coincides with Eq. (1), and the deformation
parameter is q ≠ spb 2 pfdyspb 1 pfd. In the rest of
this Letter we derive statistical distributions for identical
particles which have ambiguous quantum exclusion prop-
erties and investigate some thermodynamical properties of
an ideal gas of such particles.
A grand partition function for a system of particles

with properties defined by a stochastic label with a known
probability distribution is a sum over all possible realiza-
tions (with a weight factor) of the partition functions cor-
responding to each realization. In each realization, the
system effectively consists of k bosons and N 2 k fermi-
ons (N is the total number of particles), while the proba-
bility of this realization is pk

bpN2k
f . The total number of

states of the system is

W ≠
Y

j

NjX

k≠0

µ
Nj

k

∂
wbjskdwfjsNj 2 kdpk

bp
Nj2k
f , (3)

where the weight factor s N
k d ≠ N!yk! sN 2 kd! represents

the number of ways to arrange N identical particles in
two groups of, respectively, k and N 2 k particles each.

Here wbsmd and wfsmd are the numbers of quantum states
of m identical particles occupying a group of G states,
respectively, for bosons and fermions,

wbsmd ≠
sG 1 m 2 1d!

m! sG 2 1d!
and wfsmd ≠

G!

m! sG 2 md!
.

(4)

The partial partition function (expression under the prod-
uct sign) can be simplified and rewritten in terms of a
generalized hypergeometric function

Wj ≠ p
Nj

f
Gj

Nj

NjX

k≠0

µ
Nj

k

∂
2

µ
Gj 2 1 1 k

Nj 2 1

∂ µ
pb

pf

∂k

(5a)

≠ p
Nj

f Gj
Gj!

Nj! sGj 2 Nj 1 1d!

3
3

F
2

µ
2Nj , 2Nj, Gj; 1, Gj 2 Nj 1 1;

pb

pf

∂
.

(5b)

To proceed further, we assume the number of particles
in a system to be very large, and use Stirling approximation
for the factorials and Laplace’s approximation method to
evaluate the sum. It is enough to keep the leading term,
only. Then one can write Eq. (5) as follows:

Wj .
µ

Nj

k
0j

∂
2

µ
Gj 1 k

0j

Nj

∂
p

k
0j

b p
Nj 2k

0j

f , (6)

where k
0j is the solution of the equation
µ

Nj 2 k
0j

k
0j

∂
2

µ
Gj 1 k

0j

Gj 2 Nj 1 k
0j

∂
pb

pf
≠ 1 . (7)

Thus one can infer that the partition function, although
defined by all realizations, has its major contribution from
that realization in which exactly k

0

bosons and N 2 k
0

fermions effectively exist, where k
0

is defined by the
probability ratio pbypf alone. (Note, it is not a mixture
of species, there is only one physically existing species.)
The entropy of the system is, as usual, S ≠ lnW ,

S .
X

j
Gjhxj lnspbypfd 1 nj lnpf 1 sxj 1 1d lnsxj 1 1d

1 nj lnnj 2 s1 2 nj 1 xjd lns1 2 nj 1 xjd
2 2fxj ln xj 1 snj 2 xjd lnsnj 2 xjdgj , (8)

where nj ≠ NjyGj is the occupation number and xj ≠
k

0jyGj . Other thermodynamic functions follow straight-
forwardly. The most probable distribution subject to the
constraints that the total number of particles and the total
energy of the system be conserved is determined by the
condition

≠

≠Nj

"
S 2 a

X

j
Nj 2 b

X

j
ejNj

#
≠ 0 . (9)

4148

Dynamical	
reinterpretation	of	the	
model
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All	this	means	that	the	average	commutation	relation	between	two	particles	is	the	
average	of	

i.e.,	

which	corresponds	to	the	deformed	commutator	

aia
+
j � a+j ai = �i,j with probability p2b

aia
+
j + a+j ai = �i,j with probability p2f

aia
+
j = �i,j with probability 2pbpf

(p2b + p2f + 2pbpf )aia
+
j � (p2b � p2f )a

+
j ai = (p2b + p2f + 2pbpf )�i,j

aia
+
j � qa+j ai = �i,j with q =

p2b � p2f
(pb + pf )2

=
pb � pf
pb + pf
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In	the	context	of	a	simple	binomial	model	(i.e.,	with	no	alternative	to	observing	a	boson	
or	a	fermion),	this	means	that

Then	for	a	pure	boson	(pb =	1)	we	expect	q =	1,	and	for	a	pure	fermion	q =	-1.

This	kind	of	violation	leads	to	thermodynamical	consequences	in	multiparticle	
states.	

The	downside	is	that	there	is	no	QFT	that	describes	this	simple	scheme.

q = pb � pf = 1� 2pf
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Already	in	1980,	Amado	and	Primakoff	published	a	short	and	very	critical	
paper	on	the	meaning	of	experimental	tests	of	PEP.
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Amado&Primakoff:	the	symmetrization	principle	is	extremely	robust	

• Hamiltonians	that	are	symmetric	with	respect	to	particle	exchange	in	closed	systems	
cannot	change	the	symmetry	of	any	given	state,	and	therefore	they	cannot	connect	a	
symmetric	or	antisymmetric	state	to	a	state	of	mixed	symmetry,	even	if	it	exists,	and	so	
there	cannot	be	either	large	or	small	violations	(always	holds	in	nonrelativistic	QM)

• If	there	are	nonidentical	electrons,	then	they	should	show	up	as	additional	particle-
antiparticle	pairs	in	production	experiments	(doubling	or	more	of	cross	section,	not	
observed)

• the	appearance	of	additional	particle	pairs	would	change	virtual	diagrams	like	those	that	
contribute	to	g-2,	etc,	and	heavily	influence	the	theoretical	predictions	(again,	no	small	
violation)

• small	PEP	violations	could	possibly	leave	a	trace	as	electric	charge	nonconservation;	this	
is	also	unobserved
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Amado	and	Primakoff	– unlike	Medvedev	– frame	possible	violations	in	a	conventional	
scheme.	

To	better	understand	how	to	set	up	a	conventional	scheme	of	small	violations,	let	us	start	
from	QM	and	a	simple	QM	model	of	small	violations proposed	long	ago	(1987)	by	Ignatiev	
and	Kuzmin
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A	Fermi	oscillator	usually	has	only	two	base	states:

with	annihilation	and	creation	operators:	

In	the	IK	model,	three	base	states:

a =

✓
0 1
0 0

◆
; a† =

✓
0 0
1 0

◆

a†|0i = |1i a|0i = 0
a†|1i = �|2i a|1i = |0i
a†|2i = 0 a|2i = �|1i
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Matrix	representation

|0i =

0

@
1
0
0

1

A ; |1i =

0

@
0
1
0

1

A ; |2i =

0

@
0
0
1

1

A

a†|0i = |1i a|0i = 0
a†|1i = �|2i a|1i = |0i
a†|2i = 0 a|2i = �|1i

a† =

0

@
0 0 0
1 0 0
0 � 0

1

A ; a =

0

@
0 1 0
0 0 �
0 0 0

1

A
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The	matrix	representation	of	the	creation	and	annihilation	operators	has	a	
simple	orthogonal	basis

Using	this	basis	we	can	write	all	the	possible	operator	products,	up	to	triple.	

Example:	

M11 =

0

@
1 0 0
0 0 0
0 0 0

1

A ; M12 =

0

@
0 1 0
0 0 0
0 0 0

1

A ; . . . ; M33 =

0

@
0 0 0
0 0 0
0 0 1

1

A

a2 =

0

@
0 1 0
0 0 �
0 0 0

1

A

0

@
0 1 0
0 0 �
0 0 0

1

A =

0

@
0 0 �
0 0 0
0 0 0

1

A = �M13
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linear	and	bilinear	relations	

trilinear	relations

And	now,	what	about	the	commutation	relations:	are	there	any	
bilinear	commutation	relations	as	in	the	standard	Fermi	
oscillator?		

a = (a†)† = M12 + �M23; a† = M21 + �M32

a2 =
⇥
(a†)2

⇤†
= �M13; (a†)2 = �M31

a†a = M22 + �2M33; aa† = M11 + �2M22;

a3 =
⇥
(a†)3

⇤†
= 0; a2a† =

⇥
a(a†)2

⇤†
= �2M12;

aa†a =
⇥
a†aa†

⇤†
= M12 + �3M23; a†a2 =

⇥
(a†)2a

⇤†
= �M23
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If	there	are	bilinear	relations,	the	commutator	must	be	a	linear	combination	with	
the	following	general	form

The	terms	in	square	brackets	at	right	are	all	linearly	independent	among	them	
and	they	do	not	depend	on	the	terms	in	the	brackets	at	left,	therefore	

⇥
C1a

†a+ C2aa
† + C3I

⇤
+

h
C4a+ C5a

† + C6a
2 + C7

�
a†
�2i

= 0

a = (a†)† = M12 + �M23; a† = M21 + �M32

a2 =
⇥
(a†)2

⇤†
= �M13; (a†)2 = �M31

a†a = M22 + �2M33; aa† = M11 + �2M22;

a3 =
⇥
(a†)3

⇤†
= 0; a2a† =

⇥
a(a†)2

⇤†
= �2M12;

aa†a =
⇥
a†aa†

⇤†
= M12 + �3M23; a†a2 =

⇥
(a†)2a

⇤†
= �M23

C4 = C5 = C6 = C7 = 0
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Then

The	algebraic	equation	has	no	real	solution,	only	the	trivial	solution	exists,	and	therefore	
there	are	no	bilinear	commutators.	

0 = C1a
†a+ C2aa

† + C3I

= C1(M22 + �2M33) + C2(M11 + �2M22) + C3(M11 +M22 +M33)

8
<

:

C2 + C3 = 0
C1 + �2C2 + C3 = 0
�2C1 + C3 = 0

������

0 1 1
1 �2 1
�2 0 1

������
= �1 + �2 � �4 = 0

a = (a†)† = M12 + �M23; a† = M21 + �M32

a2 =
⇥
(a†)2

⇤†
= �M13; (a†)2 = �M31

a†a = M22 + �2M33; aa† = M11 + �2M22;

a3 =
⇥
(a†)3

⇤†
= 0; a2a† =

⇥
a(a†)2

⇤†
= �2M12;

aa†a =
⇥
a†aa†

⇤†
= M12 + �3M23; a†a2 =

⇥
(a†)2a

⇤†
= �M23
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However,	it	is	easy	to	see	from	the	M	representation	that	the	following	trilinear	
relations	hold:	

Moreover,	the	number	operator	is

and	it	satisfies	the	usual	commutation	relations

a2a† + �2a†a2 = �2a

a2a† + �4a†a2 = �2aa†a

a3 = (a†)3 = 0

N =

0

@
0 0 0
0 1 0
0 0 2

1

A = M22 + 2M33

[N, a] = �a; [N, a†] = a†
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We	can	also	find	a	more	explicit	representation	of	the	number	operator using	equations

These	equations	can	be	solved	to	express	the	M	matrices	in	terms	of	a’s	and	I:	

and	finally	we	find	the	number	operator	as	a	linear	combination	of	bilinears:

a†a = M22 + �2M33;

aa† = M11 + �2M22;

I = M11 +M22 +M33

M22 =
a†a� �2I + �2aa†

1� �2 + �4

M33 =
I � a†a� aa† + �2a†a

1� �2 + �4

N = M22 + 2M33

=
1

1� �2 + �4

⇥
(2� �2)I + (�1 + 2�2)a†a+ (�2 + �2)aa†

⇤
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Now	we	consider	the	following	toy	model	(also	introduced	by	IK)	to	
understand	the	role	of	the	violation	parameter	

with																		.	

Using	the	matrix	representation	of	all	operators	we	find	

H = H0 +Hint = EN + ✏V

V = a2a† + a†a2 + aa†a+ h.c.

✏ ⌧ E

H =

0

@
0 ✏(1 + �2) 0

✏(1 + �2) E ✏�(1 + �2)
0 ✏�(1 + �2) 2E

1

A

⇡

0

@
0 ✏ 0
✏ E ✏�
0 ✏� 2E

1

A = EN + ✏�(a+ a†)
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Using	the	approximate	Hamiltonian	one	finds	

1. the	energy	eigenvalues	(up	to	order																)

2. the	transition	rates	(from	standard	perturbation	theory)

(✏/E)2

E0 =
✏2

E
; E1 = E +

✏2(1� �2)

E
; E2 = 2E +

✏2�2

E

W01 = 2

✏2

E2
(1� cosEt)

W02 = 0

W12 = 2�2 ✏2

E2
(1� cosEt) Pauli-violating	transition	

rate	proportional	to	b 2
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When	we	try	to	relate	the	IK	theory	to	some	deformed	commutator,	we	find	

Therefore,	if	we	neglect	the							state,	in	the																			subspace we	find	that	this	
commutation	relation	falls	back	into	the	usual	scheme	if	we	let	

aa+ � qa+a = M11 + �2M22 � q(M22 + �2M33)

= M11 + (�2 � q)M22 � q�2M33

|2i |0i, |1i

�2 = 1 + q
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Mohapatra	and	Greenberg	suggested	a	QFT	for	the	IK	scheme,	and	also	two	different	
experimental	ideas
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Search	for	non-Paulian	
atoms

Search	for	anomalous	
X-rays	from	non-
Paulian	transitions	in	
non-equilibrium	
systems

The	second	suggestion	
is	actually	due	to	
George	Snow
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However,	it	turns	out	that	the	model	of	IK	is	a	nice	little	theory	…	
but	it	cannot	be	extended	to	a	true	QFT	!!!

Some	of	the	problems	of	the	IK	model	are	common	to	all	schemes	that	incorporate	
“small”	violation	of	the	spin-statistics	connection.	

It	is	important	to	note	that	already	in	1950,	Green	proved	that	there	could	be	
alternative	discrete	statistics	which	he	called	“parastatistics”.

Green	proved	first	that	common	Fermions	satisfy	the	trilinear	relations	

⇥
a†r, [as, at]

⇤
= �rsat � �rtash

a†r, [a
†
s, a

†
t ]
i
= 0
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These	trilinear	relations	are	satisfied	by	the	common	operators	that	
anticommute

BUT	they	are	also	satisfied	by	those	tha	satisfy	the	set	of	trilinear	relations	

which	are	incompatible	with	common	anticommutators.

There	are	infinite	other	multilinear	relations.	Each	set	of	(incompatible)	relations	
represents	a	given	situation	with	a	maximum	occupation	number	n.

arasat + atasar = 0

a†rasat + atasa
†
r = �rsat

ara
†
sat + ata

†
sar = �rsat + �tsar

{ar, as} = 0;
�
a†r, as

 
= �rs
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As	a	simple	example,	consider	the	situation	where	r=s=t,	then	

Now,	note	the	action	of	the	second	trilinear	on	the	vector	

Clearly,																													and																											because	a2 would	
annihilate	it,	then	another	vector	must	exist	such	that	

a3 = 0

a†a2 + a2a† = a

aa†a+ aa†a = a

|1i

(a†a2 + a2a†)|1i = a2
�
a†|1i

�
= a|1i = |0i

a†|1i 6= |0i a†|1i 6= |1i

|2i = a†|1i; a2|2i = |0i
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In	addition	to	these	multistate	parafermions there	are	also	the	parabosons.	However	
Green’s	parastatistics is	ruled	out	by	experiment,	we	do	not	observe	these	multistate	
oscillators.

We	seem	to	be	in	a	dead	end,	discrete	violations	are	not	observed,	while	small	violations	
are	theoretically	inconsistent.	

The	proofs	of	inconsistency	are	due	to	A.	B.	Govorkov who	explored	these	problems	in	
depth	in	a	series	of	papers.	

Govorkov noted	that	the	IK	trilinears can	be	written	in	the	general	form

where	the	parameters	can	be	related	to	IK’s	b

[[a†m, al]✏, ak] = �↵�kmal

[a†m, al]✏ = a†mal + ✏ala
†
m

✏ =
2� �2

1� 2�2
; ↵ = �1� �2 + �4

1� 2�2
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Govorkov used	these	commutation	relations	and	the	assumptions	that:	

1. is	finite	and	nonzero
2. there	is	a	unique	vacuum	state	|0⟩ such	that	am|0⟩ =	0	for	all	m
3. the	norm	of	vectors	is	positive	definite
4. the	number	of	particles	in	a	symmetric	(antisymmetric)	state	does	not	exceed	a	given	

integer	M ≥	2

and	he	was	able	to	show	that	in	such	a	case	one	must	have	ether																				or														
and	α >	0.	

This	strongly	restricts	the	allowed	statistics,	and	provides	a	sort	of	generalized	proof	of	
PEP.	

This	result	also	rules	out	“small”	violations	of	PEP	in	any	parafermionic system	with	a	
finite	number	of	states.	

✏

✏ = �1 ✏ = +1
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In	1990	Greenberg	proposed	a	new	QFT	with	a	small	violation	of	PEP,	
based	on	the	deformed	commutators

The	new	theory	led	to	fields	called	quons,	an	example	of	infinite	statistics – which	
is	the	statistics	of	indistinguishable	particles	with	infinite	degrees	of	freedom	–
and	escaped	Govorkov’s criticism.	

The	case	q =	0,	which	corresponds	to	the	“commutator”	

a	sort	of	average	between	a	standard	commutator	and	an	anticommutator – turns	out	to	
be	specially	important,	because	its	algebra	can	be	used	to	generate	the	algebra	of	the	q ≠	
0	cases.	

aka
+
l � qa+l ak = �kl (�1 < q < 1)

aka
+
l = �kl
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Moreover	the	statistical	mechanics	of	the	q =	0	case	matches	the	classical	Maxwell-
Boltzmann	statistics,	possibly	because	– as	first	noted	by	Govorkov – the	infinite	degrees	of	
freedom	endow	the	particles	of	the	theory	with	an	effective	distinguishability.	

Happily,	it	also	turned	out	that	the	q parameter	of	the	theory	could	be	related	to	the	b
parameter	of	the	earlier	Ignatiev-Kuzmin model,	

Greenberg	noted	that	the	theory	is	nonlocal,	and	initially	it	was	not	clear	whether	this	
nonlocality	could	also	be	relativistically invariant	– and	therefore	whether	the	theory	could	
be	a	true	relativistic	QFT	or	not.	

This	was	decided	in	1993,	when	Govorkov showed	that	the	existence	of	antiparticles	rules	
out	a	“small”	deviation	from	PEP	even	with	infinite	statistics.	

�2

2
=

1 + q

2
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Since	the	existence	of	antiparticles	is	bound	to	the	relativistic	nature	of	a	QFT,	quon theory	
cannot	be	a	relativistic	theory.	
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Given	these	considerations,	is	it	conceivable	to	ever	find	a	model	of	(small)	violations	of	
PEP	that	fits	the	constraints	of	QFT?	

Maybe	...	and	to	this	end	it	is	useful	to	review	the	axiomatic	basis	of	a	standard	proof	of	the	
spin-statistics	connection.	

Lüders and	Zumino lay	out	a	very	clean	set	of	assumptions	in	their	1958	proof:	

I. The	theory	is	invariant	with	respect	to	the	proper		inhomogeneous	Lorentz	group	
(includes	translations,	does	not	include	reflections)

II. Two	operators	of	the	same	field	at	points	separated	by	a	spacelike interval	either	
commute	or	anticommute (Locality)

III. The	vacuum	is	the	state	of	lowest	energy
IV. The	metric	of	the	Hilbert	space	is	positive	definite
V. The	vacuum	is	not	identically	annihilated	by	a	field

(G.	Lüders and	B.	Zumino,	Phys.	Rev.	110 (1958)	1450)
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In	principle	any	theory	that	breaks	one	or	more	of	these	axioms	is	a	
candidate	for	PEP	violation.	

However,	the	results	of	Govorkov	seem	to	indicate	that	most	
important	is	the	breaking	of	Lorentz	invariance.
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In	the	absence	of	a	true	theoretical	framework,	experiments	also	
present	difficult	challenges	in	the	interpretation	of	their	results

The	kinds	of	tests	devised	up	till	now	are	as	follows:		

• anomalous	X-ray	emission	from	atoms	(anomalous	electronic	transitions)
• anomalous	X-ray	emission	from	nuclei	(anomalous	nuclear	transitions)
• searches	for	non-Paulian isotopes
• anomalous	X-rays	from	materials	where	“new”	or	“fresh”	electrons	are	injected	in	

some	way

The	first	two	kinds	of	searches	have	been	inspired	by	the	work	of	Reines,	but	
unfortunately	the	claim	that	they	test	PEP	is	flawed.	



Edoardo	Milotti	– LNF	Training	School	– Dec.	19/21	2016 36

So,	what	is	the	problem	with	anomalous	X-rays	from	small	closed	systems?

When we rule out relativistic effects, we are bound to consider the standard QM situation
described above, and the symmetry of the global wavefunction has a symmetry described
by a Young tableau such as the one in the paper by Rahal and Campa (PRA, 38 (1988)
3728).

In a small system with anomalous
wavefunction (because some of the
electrons or nucleons in it are those
associated with the n1 rows) there
can be transitions with anomalous X-
rays, but since we observe “old”
systems, they should have emitted
those X-rays long ago, given the high
transition rates.
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This	means	that	recently	announced	bounds	on	the	validity	of	PEP	by	experiments	such	
as	DAMA,	Borexino,	NEMO-2,	etc.	are	actually	bounds	on	the	stability	of	electrons	or	
nucleons.

Such	tests	could	only	be	valid	in	the	framework	of	an	unconventional	theory	of	PEP	
violation	like	that	of	Medvedev (PRL		78	(1997)	4147).
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What	about	the	other	tests?

Searches for non-Paulian isotopes have been performed, with negative results, however
they are limited by the accuracy of the chemical analyses necessary to carry out the
extraction of minute amounts of “wrong” atoms amid a score of others.

Finally we are left with those tests that inject “new” electrons in a system, and search for
anomalous X-rays. The prototype experiment is that of Goldhaber and Scharff-Goldhaber,
which started out as a totally different experiment, and was interpreted much later as a
test of the Pauli principle for electrons (Phys. Rev. 73 (1948) 1472 and PRL 32 (1974) 954).
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Following	discussions	with	Greenberg	and	Mohapatra,	Ramberg and	Snow	started	
a	new	experimental	line

In	the	RS	experiment,	“new”	electrons	are	not	injected	by	a	radioactive	source	– as	in	the	
experiment	by	Goldhaber and	Scharff-Goldhaber,	but	by	an	electric	current	source.
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Conceptually	very	simple	experimental	scheme,	replicated	– however,	with	much		
better	detectors	and	shielding	– in	VIP:	

• electrons	injected	by	a	power	supply	(current	source);	ideally	this	should	be	
connected	to	a	large	metal	block	that	acts	as	a	source	of	“new”	electrons

• large	area	conductor	strip	where	electrons	circulate
• large	area	X-ray	detector,	with	good	energy	resolution,	to	detect	and	pinpoint	any	

anomalous	X-ray
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Unfortunately,	“the	devil	hides	in	the	details”,	and	here	there	are	
quite	a	few	difficult,	and	sometimes	very	conceptual,	details	…	

1. what	is	b ?
2. what	is	an	anomalous	X-ray?	
3. how	many	scatterings	are	there?	
4. what	is	a	”new	electron”?	
5. how	many	anomalous	X-rays	are	there?	
6. ...	and	finally,	what	does	all	this	mean?	
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Here	I	consider	in	greater	depth	only	item	2: what	is	an	anomalous	X-ray?

E

x

bound	electrons

conduction	band
filled	states

unfilled	states

X-ray
emission

electron	capture	
and	radiative	
transition	to	an	
already	filled	state
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Estimate of X-ray energy (Cu Ka1 =8.05 KeV; Kb1 =8.90 KeV)

This estimate is necessary to define the region of interest in the 
X-ray spectrum

Available methods: 

1. Naive estimates

2. Hartree-Fock methods

3. Thomas-Fermi and modified Thomas-Fermi methods
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A	simple	estimate is	based	on	the	remark	that	if	we	assume	that	

the	effective	charge	“seen”	by	the	captured	anomalous	electron	

is	approximately	(Z-1)	(because	of	the	partial	screening	of	the	K-

shell	electrons),	then	- in	the	case	of	Copper	- the	emitted	

photon	has	an	energy	which	is	approximately	that	of	the	Nickel	K	

X-rays,	i.e.	

Ka1 =7.48	KeV;

Kb1 =8.26	KeV
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A	somewhat	better	estimate	starts	from	an	approximate	calculation	of	the	
screening	effect	of	the	other	electrons. Here	we	calculate	the	charge	inside	the	
orbit	of	the	1S	electron	in	a	hydrogenoid atom:	

Thus,	we	obtain	a	naive	estimate	of	the	energy	for	both	H-like	ions	and	He-like	ions:

Z
r1S

0
| (r)|2 · 4⇡r2dr =

1

2

Z
a0/Z

0
exp

✓
�2Zr

a0

◆ ✓
2Zr

a0

◆2

d

✓
2Zr

a0

◆

=

1

2

Z 2

0
x

2
e

�x

= 1� 5e

�2 ⇡ 0.32

EH ⇡ (Z � 0.32)2R1; EHe ⇡ (Z � 0.64)2R1;
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If	we	use	this	“naive	estimate”	to	correct	the	energy	of	Ka X-rays	for	
non-Paulian copper,	and	we	find:	

Element
Observed 

EH

EH from 
naive 

estimate

Observed 
EHe

EHe from 
naive 

estimate

C 490.0 489.8 392.1 439

Cu 11568 11443 11063 11192

ionization energies from: C. E. Moore,  Ionization Potentials and Ionization Limits Derived from the Analysis of Optical Spectra, 
NBS Pub. NSRDS-NBS 34 (1970)

ionization	energies	(eV)

EH ⇡ (Z � 0.32)2R1; EHe ⇡ (Z � 0.64)2R1;
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Hartree-Fock methods are usually quite precise, but in this case there is some 
awkwardness of implementation. 

We must exclude the “anomalous” electron from the Hartree-Fock
antisymmetrization determinant, we have to deal with a global electron 
wavefunction of the form 

This	implies	that	the	added	electron	has	no	specific	symmetry	with	respect	to	
all	other	electrons	in	the	atom	and	this	is	an	additional	assumption	that	may	
not	be	true.	

Moreover,	this	approach	requires	an	ad	hoc HF	procedure,	it	is	not	possible	to	
use	existing	programs	without	modifications
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To	compute	the	transition	energies	VIP	utilizes	the	relativistic	multiconfiguration
Dirac-Fock package	(MCDF)	by	J.P.	Desclaux et	al.	

…	the	accurate	estimate	is	not	so	far	off	the	naive	estimate	after	all	...	

For	more	details	see	Sergio	di	Matteo’s	talk.

6

TABLE I.

Transition ~!
Paulian

(eV) ~!
non�Paulian

(eV) �
non�Paulian

(Hz) (~!
non�Paulian

� ~!
Paulian

) (eV)

2p
1/2 ! 1s

1/2 (K↵2

) 8047.78 7728.92 2.64⇥ 1014 318.86

2p
3/2 ! 1s

1/2 (K↵1

) 8027.83 7746.73 2.57⇥ 1014 279.84

3p
1/2 ! 1s

1/2 (K�2) 8905.41 8529.54 2.77⇥ 1013 375.87

3p
3/2 ! 1s

1/2 (K�1) 8905.41 8531.69 2.67⇥ 1013 373.72

3d
3/2 ! 2p

3/2 (L↵2

) 929.70 822.84 5.99⇥ 107 106.86

3d
5/2 ! 2p

3/2 (L↵1

) 929.70 822.83 3.49⇥ 108 106.87

3s
1/2 ! 2p

1/2 832.10 762.04 3.70⇥ 1011 70.06

3s
1/2 ! 2p

3/2 811.70 742.97 7.84⇥ 1011 68.73

3d
5/2 ! 1s 8977.14 8570.82 1.21⇥ 106 406.32

As an electron travels from one end to the other of the copper strip, in a wiggly, nearly straight path, it undergoes many
close encounters with atoms (“scatterings”). If we let n be the number density of the electrons, � the conductivity
of copper, and m the electron mass, then the speed of the electrons is obtained from the Fermi energy EF , i.e.,
vF =

p
2EF /m (copper has EF = 7 eV), the mean free path is

` =
mvF

ne

2

�, (12)

so that the number of scatterings of a single electron under the detector of size L

DET

is NS ⇡ L

DET

/`, and finally
the mean collision time is

⌧ =
`

vF
=

m�

ne

2

. (13)

RS estimated the capture probability PC to be roughly equal to the probability of radiative capture (1/10) times
the probability of finding a non-Paulian pair of electrons (�2

/2), i.e.,

PC ⇡ 1

10

�

2

2
(14)

and this means that with a current that is uniformly distributed throughout the cross-section of the strip with strip
thickness z, and taking into account the absorption length � of the emitted X-rays – so that the fraction of X-rays
exiting the strip towards the detector is �/z – and a geometric factor ⌦/4⇡ where ⌦ is the solid angle covered by the
detector, the number of detectable X-rays is at least

NX ⇡ PCNNS
�

x

⌦

4⇡
=

1

10

�

2

2

ND

`

�

x

⌦

4⇡
(15)

While RS provides a very first estimate, their calculation has some notable weak points. One of them is the
approximation of “straight path” as an electron moves across the strip. Indeed, since vd = V �/neL is the drift speed,
with the potential di↵erence V across the strip of length L, then the time taken to cross a region as large as the
detector is

�t ⇡ L

DET

vd
=

ne

�

L

DET

L

V

(16)

and the e↵ective number of scatterings due to the winding paths caused by random thermal motion is

NN

(w)

S = N

�t

⌧

= N

n

2

e

3

m�

2

L

DET

L

V

= t

on

n

2

e

2

m�

zwL

DET

(17)

instead of the “straight path” result

NN

(sp)
S = N

L

DET

`

= t

on

ne

mvF�
ĪL

DET

(18)

The e↵ective number of scatterings N

(w)

S is somewhat di↵erent from the RS estimate N

(sp)
S : in particular there is

no longer a direct dependence on the current, and the reason is that for a given sample, if one wants to inject more
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Final	considerations	...

We	have	seen	that	tests	of	PEP	confront	us	with	problems	that	go	deep	into	the	heart	of	
science.	

This	is	unusual	in	physics:	in	most	cases	questions	are	laid	out	clearly.

In	this	regard	it	is	interesting	to	compare	the	situation	to	the	statistical	inference	in	
physics,	starting	from	Bayes’	Theorem

The	usual	(frequentist)	approach	that	maximizes	the	likelihood	is	a	stripped-down	version	
of	Bayes’	Theorem

p(✓|D, I) =
p(D|✓, I)R

⇥ p(D|✓, I)p(✓, I)d✓
p(✓, I)

Likelihood
Posterior	distribution

Prior	distribution
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p(✓|D, I) =
p(D|✓, I)R

⇥ p(D|✓, I)p(✓, I)d✓
p(✓, I)

L(✓;D) = p(D|✓, I)

Prior	distribution:	main	target	of	
frequentist	criticisms,	as	a	source	
of	subjective	information.

Posterior	distribution	of	the	parameter:	
according	to	frequentists	this	does	not	
make	sense	because	the	parameter	is	
normally	a	constant.

Likelihood:	frequentists	(many	physicists)	are	happy	with	this,	
however	the	likelihood	also	embeds	a	great	deal	of	prior	information	
as	it	is	the	physical	model	of	the	distribution	of	data.
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John	Tukey	put	the	statistical	argument	beautifully	in	a	1980	paper	

This content downloaded from 131.91.169.193 on Wed, 20 Apr 2016 08:07:49 UTC
All use subject to http://about.jstor.org/terms

This content downloaded from 131.91.169.193 on Wed, 20 Apr 2016 08:07:49 UTC
All use subject to http://about.jstor.org/terms

This content downloaded from 131.91.169.193 on Wed, 20 Apr 2016 08:07:49 UTC
All use subject to http://about.jstor.org/terms

Find	the	right	
question!	
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Maybe,	following	Tukey’s	advice	we	shall	be	able	to	grasp	something	more	of	the	
essence	of	PEP!

For	more	on	the	experiments,	see	Hans	Marton’s	talk.	


