

New generation Pixel Readout ASICin 65nm CMOS for Extreme Rates at HL-LHC :

INFN/CHIPIX65 contributions to RD53: recent results and perspectives

L. Demaria, INFN / Torino

On behalf of CHIPIX65 collaboration

overlap of 200 collisions in 1 BX

L.Demaria: Pixel ROC for PIXEL Phase-2

CALL Project CSN5 approved in October 2013

Development of an innovative **CHIP** for a **PIX**el detector, using a CMOS **65**nm technology for the first time in HEP community, for experiments with extreme particle rates and radiation at future High Energy Physics colliders.

Principal Investigator : Natale Demaria - INFN/Torino

Institutes:

Bari, Lecce, Milano, Padova, Pavia, Perugia, Pisa, Torino

People (~40 of which 50% ASIC designers; 12.4 FTE)

CHIPIX65 Project

Institutes:

Bari, Lecce, Milano, Padova, Pavia, Perugia, Pisa, Torino

People (44 of which 50% ASIC designers):

N.Demaria, G.Dellacasa, G.Mazza, A.Rivetti, M.D.Da Rocha Rolo, E.Monteil, L.Pacher, F.Ciciriello, F.Corsi, C.Marzocca, G.De Robertis, F.Loddo, C.Tamma, M.Bagatin, D.Bisello, S.Gerardin, S.Mattiazzo, L.Ding, P.Giubilato, A.Paccagnella, F.De Canio, L.Gaioni, M.Manghisoni, V.Re, G.Traversi, E.Riceputi, L.Ratti, C.Vacchi, R.Beccherle, G.Magazzu, M.Minuti, F.Morsani, F.Palla, V.Liberali, S.Shojaii, A.Stabile, G.M.Bilei, M.Menichelli, S.Marconi, D.Passeri, P.Placidi, S.D'Amico, C.Veri, A.Donno.

	Country	Town	Institute	Inst.
	-			Representative
1	Czech Republic	Prague	FNSPE-CTU/IP-ASCR	Miroslav Havranek
2	France	Marseille	CPPM	Alexandre Rozanov
3	France	Paris	LPNHE	Giovanni Calderini
4	Germany	Bonn	Bonn University	Hans Krüger
5	Italy	Bari	INFN and Politecnico	Flavio Loddo
6	Italy	Milano	INFN and University	Valentino Liberali
7	Italy	Padova	INFN and Politecnico	Alessandro Paccagnella
8	Italy	Pavia	INFN and University	Valerio Re
9	Italy	Perugia	INFN and University	Gian Mario Bilei
10	Italy	Pisa	INFN and University	Fabrizio Palla
11	Italy	Torino	INFN and University	Natale Demaria
12	Netherlands	Amsterdam	NIKHEF	Nigel Hessey
13	Spain	Sevilla	Sevilla University	Rogelio Palomo
- 14	Switzerland	Geneva	CERN	Jorgen Christiansen
15	UK	Didcot	Sc.&Tech Facilities Council	Mark Prydderch
16	USA	Chicago	Fermilab	David Christian
17	USA	Berkeley	University of California	Beate Heinemann
18	USA	Albuquerque	Univ of New Mexico	Sally Seidel
19	USA	Santa Cruz	U.C. Santa Cruz	Alex Grillo

RD53 Collaboration is a real and effective synergy among CMS-ATLAS communities with a specific and focused goal with a real main deliverable: a LARGE scale FRONT-END ASIC prototype for Pixel-Phase 2 detectors

Personal comment:

quite unique experience challenging when going to decision **EXCELLENT melting pot !**

INFN: 7 groups, 30% of RD53 members

Institutes: 8 CMS, 2 CMS/ATLAS, 9 ATLAS

Web-site: http://rd53.web.cern.ch/rd53/

Ingredients and strategy defined in RD53

CHIPIX65 Design Submissions

DESIGN TEAM			20	14			20	15		2	016	Rad. charact erizatio
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	a
SER	Pisa			v1		Ŋ	/1					\/_
DES	Pisa			<u>v1</u>			/1					
SLVS-TX/RX	Pisa					1	1			<u>v2</u>		<u>v1</u>
SLVS-TX/RX	Pavia					1 N	/1					<u>v1</u>
BandGap Pavia				<u>v1</u>		3	/2					<u>v2</u>
DualRail Dig Milano						3	/1					
DICE RAM	Milano			<u>v1</u>						<u>v2</u>		
DAC-curr	Bari			<u>v1</u>								<u>v1</u>
ADC	Bari					3	11			<u>v2</u>		
PLL	Torino									<u>v1</u>		
DC-DC Lecce										<u>v1</u>		
VFE-synch Torino				<u>v1</u>		J.	12					<u>v2</u>
VFE-async Pavia				<u>v1</u>		y	2					<u>v2</u>
CHIPIX_DEMO											X	
(64x64) ALL												

CHIPIX65-FE0: Summary

Î	
, I	

3.16 mm -

	RD53A Specs	CHIPIX65-FE0
Technology	65nm CMOS	yes
Pixel size	50x50 um2	yes
Detector foreseen	Cap<100fF, Leakage<10nA	yes
Detection threshold	<600 e-	ok, bare chip 250e-
In-Time threshold	<1200 e-	ok
Noise hits	<1E-6	ok
Trigger rate	1 MHz	ok
Trigger Latency	12,5 usec	ok
Hit Rate	< 3 GHz/cm2	ok
Hit Loss at Max hit rate	< 1%	ok
Charge resolution	at least 4-bits (500e-)	5-bits (200-500e-)
Pixel analog/digital	4uA / 4uA	ok
Pixel array	400x192 pixel (2cm2)	64x64
Radiation tolerance	500 Mrad, 1E16 1 MeV n/cm2	Analog ok, digital tbd

Full INFN development (about 1 year work):

- Two Analog Very Front Ends
- IP-block (DAC, ADC, I/O, BandGap, sLVS-TX/Rx, Serialiser)
- Digital design, digital-on-top, chip integration

~3 Millions digital standard cells (400 each pixel)

CMS-Italia, Spoleto, Dec.201o

mm

Ю

1

LO

CHIPIX65-FE0 layout

- 1. 64 × 64 Pixel Array
 - a Synchronous Front-End Architecture

b Asynchronous Front-End Architecture

- Column Bias Cells with current 2 mirrors (Analog)
- End of Column and SER (Digital)
- Global DACs, BGR and ADC
- SLVS TX/RX and I/O cells

FIFO-based readout architecture, SPI-based chip configuration \bigcirc

- integration of available silicon-proven IP-blocks designed for RD53: 0
 - Bandgap Voltage Reference (Pavia INFN)
 - SLVS transmitters/receivers (Pisa INFN) D
 - High-speed SER (Pisa INFN) 0
 - 10-bit biasing DAC (Bari INFN)
 - 12-bit monitoring ADC (Bari INFN)
- modified CERN rad-hard I/O library

3,46 mm

test be test be test be test be test by test ter test test be test

la provinsi na

an one little

100,000 000,000 000,000 000,000

alk an alk of alk of alk of alk of alk of alk of the design in the line of the design of the design of the des

THE REAL PROPERTY.

I DED DED DED THAT THAT HAT I

JANE HAD DEAD DATE

2

3

1b

Top Level

(RTL/Innovus/Verilog)

Simulation → VEPIX53

ASIC

Suley. 2

(RTL/Innovus/Verilog)

ð

PIXEL CORE (8x8)

(Virtuoso/ADE-XL)

(DRC/LVS)

- Voltus

Dig. Chip Bottom

(RTL/Verilog)

Calibre DRC/LVS

RTL

¢q,

- Tempus

CHIPIX65-FE0 Design Team

CHIPIX Integration and Floor Planning

L.Pacher(*)

Digital

A.Paterno(*), L.Pacher

Analog Front Ends

E.Monteil(*), L.Gaioni(*), L.Ratti

Young researchers are strongly contributing (in bold).

IP-Blocks

F.De Canio(*), G.Traversi, F.Loddo(*), G.Magazzu, C.Marzocca, F.Liciulli, F.Ciciriello

Analog Bias and Monitoring

F.Loddo

Architecture Simulation and Verification

S.Marconi(*), E.Conti(*), G.Mazza, G.Dellacasa

(*) : also part of RD53A design team

L.Demaria: Pixel ROC for PIXEL Phase-2

Testing of CHIPIX65-FE0: First Results

Test Set-up

- chips received back from the foundry: END OF SEPTEMBER, 2016
- preliminary tests started in Turin: TWO W EEKS AGO
- full-digital ASIC/FPGA interface (FMC)
- prototype wire-bonded on a custom test board
- a few test points for global bias voltages/currents
- FPGA Xilinx Virtex 7 board
- LabView data acquisition test interface

٠

•

•

•

•

Chip Performance summary

CHIP-configuration works correctly

- DAC / EoC / Pixel configuration via SPI
- Bias distribution works correctly
 - **Regional digital architecture tested**
 - triggerless, triggered, binary / 5-bit digitization, debug-mode

Readout works fine

• EoC, Data output at 320 MHz with 8b10b encoding

ALL IP-block work:

- BandGap, DAC, ADC, sLVS-Tx/Rx, Serialiser
- Analog VFE work fine

- 1 VCAL

L.Demaria: Pixel ROC for PIXEL Phase-2

CMS-Italia, Spoleto, Dec.2016

ADC - monitoring

We can monitor via an internal ADC all:

- Bias currents
- Bias Voltage
- Cal Voltage

- all pixels tested and fully working
- autozeroing performed each 200 µs
- O effective NOISE and THRESHOLD values determined by means of S-curves
- O measurements performed with CHARGE SCANS and FIXED THRESHOLD
- HIT EFFICIENCY recorded for 100 charge-injection pulses
- measured points fitted using an error function (sigmoid)
- noise and threshold values extracted from means and variances distributions
 L.Demaria: Pixel ROC for PIXEL Phase-2
 CMS-Italia , Spoleto, Dec.2016

- Vth=60 DAC-counts corresponds to 250 e- (see next slide)
- auto-zero : 75ns every 100 usec
- Calibration signal sent with random time distance from auto-zeroing
- no pixel has been excluded
 L.Demaria: Pixel ROC for PIXEL Phase-2

CMS-Italia , Spoleto, Dec.2016

- ENC measured for different values of fixed global threshold
- constant behavior with threshold values as expected
- ENC ~ 90 e⁻ RMS in good agreement with CAD simulations
- very low-noise performance assured despite intense latch and region-logic switching activity

L.Demaria: Pixel ROC for PIXEL Phase-2

CMS-Italia , Spoleto, Dec.2016

Analog - ToT counting

A clocked counter counts when signal above threshold :

- easy small
- done per pixel
- low power

Cons: dead-time

<u>TO OBTAIN <1% inefficiency from Analog pile-up</u>

- 1.<ToT_pix> should be < 135ns
- 2. For 4-bit (600e-) ToT counter @ > 60 MHz

VFE-TO Fast ToT counting

A signal above discriminator threshold start a local oscillator (rough VCO) with a frequency controlled by a 10-b DAC. The increase of power is of around 5% (0,2 uW/pix) at 3 GHz/ cm2

VFE-TO Fast-ToT measurements

- Good ToT Linearity 5 bit ToT
- Here shown measurement with 320MHz Fast ToT
- Fast-Tot-clock frequency can be varied via a 10-bit DAC
- Slope dispersion of about 12% expected from mismatch in I-Feed

VFE-BG/PV Threshold and noise

CMS-Italia, Spoleto, Dec.2016

120

140

Entries

Mean

RMS

160

16

14

18

2048

8.661

1.122

180

L.Demaria: Pixel ROC for PIXEL Phase-2

CHIPIX65 digital architecture

CHIPIX65 Regional architecture extended to (4x4) pixels

AREA for digital is tight: idea is to make real use of sharing digital resources among more pixel

- FEI4 architecture NOT convenient for regions larger than (2x2)
- NEW architecture developed by CHIPIX65 based on (4x4)

CHIPIX65 Novel digital architecture

CHIPIX65 architecture 2 performance @ 3GHz/cm

Metrics	4x4 PR architecture		2x2 PR a (1	Toda	
Hit loss due to dead time (0()	40MHz FE	128MHz FE	40MHz FE	128MHz FE	Statu
	3.19	0.94	0.72	0.42	Clarc
Hit loss due to buffer overflow (%)	<i>16 loc.</i> : 0.24	16 loc.: 0.29	<i>8 loc.</i> : 0.74 (0.57)	<i>8 loc.</i> : 0.76 (0.57)	
ToT loss due to limited ToTs (%)	0.10	0.11		_	
Total hit loss (%) (ToT loss excl.)	16 loc.: 3.44	16 loc.: 1.23	<i>8 loc.</i> : 1.46 (1.29)	<i>8 loc.</i> : 1.19 (0.99)	

Low Power and area saving

... now moving to better efficiency

CHIPIX65 architecture							
	Power	Power with					
Analaa	3GHz/cm2,	0 GHz/cm2,					
Analog	Tr=1 MGHz	No Trigger	AREA	A	AREA		
	uW/pix	uW/pix	um2	9	6		
VFE-asynch	4,51	4,05	8	76	68%		
VFE-TO (synch) 40MHz ToT	4,52	4,25	8	60	68%		
VFE-TO (synch) Fast ToT	4,73	4,25	idem		idem		

gain of 15%	6 in ar	ea					
CHIPIX65 architecture - VFE-TO FastToT							
#bit	Power 3GHz/cm2, Tr=1 MGHz uW/pix	AREA %					
4-bit ToT	4,73	68%					
5-bit ToT	4,96	73%					
6-bit ToT	5,62	79%					

Next Steps

Large Design team:

- coordination: F.Loddo (INFN-Ba)
- deputy: T.Hemperek (Bonn)
- about 13 designers (7 from INFN)
- Weekly meeting
- from middle January ALL at CERN for finalisation and verification work

- Large size prototype chip
- Base-line for CMS and ATLAS chip

Submission foreseen: Spring 2017

We just had 1-day design review (Tuesday) with external reviewer: ==> very positive outcome

Parameter	Тур.	Max.
Core direct supply voltage	1.2 V	1.32 V
ShuLDO input voltage	1.5 V	2.0 V
Per pixel analog current	4μΛ	$8 \mu \Lambda$
Per pixel digital current	4 μ A	6µA
RD53A Periphery analog current	$30\mathrm{mA}$	60 mA
RD53A Periphery digital current	30 mA	60 mA
Output drivers (each)	$20\mathrm{mA}$	30 mA
Total RD53A current (4 outputs)	0.75 A	1.3 A
400x384 chip periphery analog current	50 mA	100 mA
400x384 chip periphery digital current	$60\mathrm{mA}$	120 mA
Total 400x384 chip current (4 outputs)	1.4 A	2.5 A

Table 1: Power supply limits

L.Demaria: Pixel ROC for PIXEL Phase-2

CMS-Italia , Spoleto, Dec.2016

FROM SMALL demonstrators towards RD53A)

Characteristics	FE65P2	CHIPIX65-FE0	RD53A
Pixel Matrix	64x64	64x64	400x192
	(2x2) analog islands	(2x2) analog islands	(2x2) analog islands
Matrix Organization	Pixel Regions	Pixel Regions	Pixel Regions
	(4x64) COREs	(4x4) COREs	(8x8) COREs
	(2x2) pixels	(4x4) pixels	(2x2) (4x4) pixels
Pixel Regions	distributed data buffer	centralized data buffer	tbd
	trigger matching	trigger matching	trigger matching
VFE	VFE-1	VFE-2	VEE-1, VFE-2
		VFE-3	VFE-3,
Analog-Digital	Analog triple well.	Analog triple well	Analog triple well
Isolation	.Digital triple well		Digital triple well
Signal Digitisation	4-bits	binary or 5-bits	4 or 8 bits
		. BandGap, DAC, ADC	BandGap DAC, ADC
Building Blocks	few not RD53	SER, sLVS-Tx/Rx.	Ana-Buffer, PON-reset, Sh-LDO
			sLVS-Tx/Rx. Cable Driver,
			PLL-CDR, Temp Sensor
Bias-Distribution	Single stage mirroring	Double stage mirroring	Double stage mirroring
Radiation hard design	Analog	Analog	Analog and Digital
Powering	Standard	Standard	Serial-Powering

Conclusions

- A CMOS 65nm FE ASIC is the only viable solution for inner layers of Phase 2 pixel detectors and it is also a preferable solution for the other layers overall.
- CHIPIX65 project has boosted the INFN towards the use of CMOS 65nm and to work a real application for a Pixel Phase 2 readout ASIC. High level, effective and innovative contributions to all the aspects and measured in the framework of RD53 international collaboration
- A CHIPIX65_FE0 first results are VERY promising: works low threshold (250e-), Fast-ToT, 2 VFE, IP-blocks
 - irradiation test in early 2017; bump-bonding foreseen to planar / 3D
- INFN / CHIPIX65 is essential for the RD53A design and test
- Now we have matured enough experience in INFN to continue after RD53A to design the future ASIC for the Phase-2 Pixel detector

Radiation Effects

L.Demaria: Pixel ROC for PIXEL Phase-2 CMS-Italia , Spoleto, Dec.2016

L=min size

TID has no effects on

- Vth does not change gate oxide is radhard
- CMOS leakage current (Ids) STI stop current flowing

TID HAS effects on small gates (L or W)

- **RINCE** (small W) and **RISCE** (small L) effects
 - Max current (I_{on}) decreases
 - Transconductance decrease (G_m)
- Effects mainly on small size CMOS, impact on minimum size digital circuits

Modeling radiation damage

All data measured by RD53 on CMOS are fitted using a simple model. Very power tools to verify all the design of IP-block, VFE and digital circuitry

The mobility factor kµ0n is defined as µ0_rad/µ0_prerad

P-MOS modeling fitting data

N-MOS modeling fitting data

DRAD : first results

NEXT Steps:

- Repeat tests with cooling:
 - 200 MRads with cooling.
 - 1000 MRads with cooling.
- Radiation campaign up to 500MRads.
- Continue with the current annealing testing and annealing at 100°C.

CELL HEIGHT 7 Track: 1.4 uM 9 Track: 1.8 uM 12 Track: 2.4 uM 18 Track: 3.6 uM

- 9T is the digital library for Pixel-Matrix (7T cannot be used)
- so far results in agreement with simulation models derived from single MOS radiation characterisation results

Damage in digital

Radiation-Induced Narrow Channel Effect (RINCE) Radiation-Induced Short Channel Effect (RISCE)

W=1um

L.Demaria: Pixel ROC for PIXEL Phase-2

40

Area Comparison 🖗 AIDA

Are MODIFIED 65nm digital cell convenient w.r.t. 130nm? YES !

AREA GAIN of : 3-4 times for Standard-lib (with minimal W increase); 2-3 times for Enlarged 12T

L.Demaria: Pixel ROC for PIXEL Phase-2

Hit losses from Latency buffer depth

- Depth of memory buffer =16 provide negligible losses
- We could implement 'double' locations for low rate / higher resolution ? (low priority work) L.Demaria: Pixel ROC for PIXEL Phase-2 CMS-Italia , Spoleto, Dec.2016

Binary INFO due to limitation in latency buffer width

6 PIX: 0,4% binary info 4 PIX: 1,1% binary info

- This is NOT a hit loss: binary info STILL available
- Possible to 'compress' saturated channels (to be studied)

8x8 pixel matrix submitted and tested Analog readout of CSA and Discriminator (via buffers)

- · PREAMPLIFIER
 - One stage CSA with Krummenacher feedback
- Synchronous DISCRIMINATOR
 - (AC coupled to CSA)
 - off-set compensated diff.amplif. + latch;
 - FAST Time-over-Threshold
 - Local oscillator strobing Latch (to 800MHz
- Calibration circuit
 - digital signal + DC calibration leve

Performance SUMMARY

- Compact: < 35um x 35 um
- Low power: < 5.5 uW (with ToT logic)
- Low noise: ENC=100e @C_{det}=100 fF
- Leakage compensation: up to 50nA/pixel
- Fast Charge measurement:
 - 10 ke in : 90 / 360 ns (Fast / Slow recovery current)
 - can achieve up to 7-8bit (125-250e /ADC) no ext clock
- NO Threshold-Trimming:
 - autozeroing made by hardware

CHIPIX65 demonstrator

(4x4) Pixel Regions with four (2x2) analog island on digital see

1004

834.3 Biss

mitrol 1

CDAC 1

SPI Global Configuration Registers (CCRs) + ADC centrel

mimer n

CDAC n

monitoring ADC

Distribute voltages to 64 picels

853

IN DACK

16

47

and oK IP on bold have prototypes TESTED

: CPPM, Pavia, CERN : Bari, Prague : CERN, LBNL

: Pavia, Pisa

: Pisa

: Bonn

• I/O PAD • SLVDS driver : Pavia, Pisa

• SLVDS receiver

• Band Gap

• DAC

BIAS

n/Out

Power

• PLL

- : Bonn • SER : Bonn, Pisa
- DES
- CDR
- Cable Driver : Bonn
- Monitoring ADC : CPPM, Bari, CERN Monitor
 - Temperature Sensor: **CPPM**
 - Radiation Sensor : CPPM
 - Analog Buff RtoR : RAL

• Power-ON Reset : Sevilla

• Shunt LDO : Dortmund

- Config. Memories : CPPM
- SRAM EOC : CERN, Milano
- Others : VCO, EFUSE, DC-DC....

CMS-Italia, Spoleto, Dec.2016

- List of required ~20 IP blocks: assigned to various groups
- Initial specs review done in June 2014
 - 2014: 7 first prototypes submitted
 - 2015: remaining prototypes •
 - 2016: versions for RD53A
- IP-block for RD53A have to be prototyped, characterised and tested before / after irradiation up to at least 500 Mrad.

An innovative

for a

using a CMOS

technology