

Stato e prospettive per ttH e HH

Giacomo Ortona (LLR)

ttH production

HH: motivations and theory

HH:What are we doing and what are we bringing to Moriond

- •The main 4 channels: bbbb, bbWW, $bb\tau\tau$, $bb\gamma\gamma$
- The 2 new guys in town: bbZZ, $\gamma\gamma\gamma\gamma$

HH: what is coming soon...

...and what to expect for the future

Conclusions and open points

ttH production

ATLAS+CMS

CMS

-±1σ

-±2σ

• ttH \rightarrow WW*/ZZ*/ $\tau\tau$, low rate, low multilepton background

2.5

3

Parameter value

3.5

ttH, brief resume

multilepton: fit on BDT distributions in 2 categories: SS dilepton and 3-leptons, events categorised for b-tag, lepton flavour, τ decay, lepton charge

bb: dilepton/l+jets tt events + b-tags, categorise events

12.9 fb⁻¹ (13 TeV) **CMS** Preliminary according to njets+b-tag, BDT+MEMs to reject background TTH Leptonic Tag ⁸ m_H=126.0 GeV, μ̂=0.95 Data Simulation Lepton+Jets Channe S+B fit B component ≥ 6 jet, ≥ 4 b-tags ≥ 6 jets, 3 b-tags 4 jets, 4 b-tags 5 jets, \geq 4 b-tags ±1σ ±2 σ γγ: tagged S/B=0.015, S/√B=0.242 S/B=0.035, S/√B=0.973 S/B=0.011, S/VB=0.895 S/B=0.024, S/VB=0.532 Η→γγ 🚺 CMS Simulation **Dilepton Channel** B component subtracted ≥ 4 jets, 3 b-tags 3 jets, 3 b-tags \geq 4 jets, \geq 4 b-tags tt+lf categories tt+cc tt+b tt+bb 100 130 140 150 160 170 110 120 FWK m_{γγ} (GeV) ttH S/B=0.004, S/VB=0.084 S/B=0.040, S/VB=0.417 S/B=0.012, S/VB=0.453

CMS Italia 2016 - Spoleto - 16/12/2016

Giacomo Ortona

Events / GeV

Quite excitingly, preliminary results from multi-lepton and $\gamma\gamma$ analyses seems to confirm the excess of run 1

- Discussion on the handling of systematic uncertainties already started
- Planning towards CMS+ATLAS combination
- MEMs developments for multi leptons
- Let's see with the new 2016 statistics!

CCMS pouge unit means

Quite excitingly, preliminary results from multi-lepton and $\gamma\gamma$ analyses seems to confirm the excess of run I But let's not get excited too early

- Discussion on the handling of systematic uncertainties already started
- Planning towards CMS+ATLAS combination
- MEMs developments for multi leptons
- Let's see with the new 2016 statistics!

HH Motivations: anomalous λ_{hhh}

The value of λ_{hhh} affects both the production cross-section and the hh kinematical variables

~3.7 times increase in the production xsection going from 8 to 13TeV

HH Motivations: BSM

 $\sigma^{SM}_{hh}(13\text{TeV}) = 33.45\text{fb}^{+4.3\%}_{-6.0\%}(\text{scale unc.}) \pm 3.1\%(\text{PDF}+\alpha_{S} \text{ unc})^{[1]}$

The non-resonant double Higgs production is the principal way to extract the Higgs trilinear coupling (λ_{hhh}). Even if in Run2 we will not have full sensitivity to "measure" λ_{hhh}

 \rightarrow The BSM physics can be modelled in EFT adding dim-6 operators^[2] to the SM Lagrangian, and the physics can be described with 5 parameters: λ_{hhh} , y_t, c₂, c_{2g}, c_g

- Non SM Yukawa and λ_{hhh} couplings
- New diagrams and couplings in the game

[1] LHCHSWG Yellow Report 4 [2] Phys. Rev. **D91** (2015), no. 11, 115008

Giacomo Ortona

Cg

HH Motivations: Resonant

MSSM/2HDM: Additional Higgs doublet \rightarrow CP-even scalar H.

• We can probe the low m_A /low tan β region where BR(H \rightarrow h(125)h(125)) is sizeable.

Singlet model: Additional Higgs singlet with an extra scalar H.

• Sizeable BR beyond $2xm_{top}$, non negligible width at high m_H.

Warped Extra Dimensions:

spin-2 (KK-graviton) and spin-0 (radion) resonances.

• Different phenomenology if SM particles are allowed (bulk RS) or not (RSI model) in the extra dimensional bulk

Trilinear coupling from single Higgs

Assumption: NP only manifest itself via an anomalous trilinear coupling, while all other couplings are unchanged (or modifications are negligible) Several discussions are ongoing to decide if it is a reasonable assumption, requires ΛNP to be not too high

Quick projection: results are competitive with what is obtained from double Higgs production.

Trilinear coupling from single Higgs

Assumption: NP only manifest itself via an anomalous trilinear coupling, while all other couplings are unchanged (or modifications are negligible) Several discussions are ongoing to decide if it is a reasonable assumption, requires ANP to be not too high

Quick projection: results are competitive with what is obtained from double Higgs production. ttH production is the main driver of the sensitivity

CMS searches

- 6 different searches at CMS
- bbbb, bbWW, bbau au, bb $\gamma\gamma$, bbZZ, $\gamma\gamma\gamma\gamma$
- Rare processes, low σxBR , complex environment

channel		CMS
bbbb	13.3	2.3/2.7
bbWW	2017	2.3
bbττ	-	12.9 🚺
bbγγ	3.2	2.7
WWγγγ	13.3	-
bbZZ	-	2017
γγγγ	– Iumi analyse	2017 ed @ 13TeV

bbWW: large BR, large tt background

different sensitivities to different m_H ranges

hh→bbγγ

Most sensitive channel for non-resonant production biagging

- 2 b-tag categories (low/high purity)
- background from fit to the data
- 2D fit on the reconstructed H masses
- Effective mass $M_X = M_{jj}\gamma\gamma M_{jj} + 125$ GeV to remove background (resonant) or categorise events (non-resonant)

Still working on:

• B-jet regression, helicity angles, VBF production

CMS Italia 2016 - Spoleto - 16/12/2016

Giacomo Ortona

HH→bbWW

- Search for $hh \rightarrow bbWW \rightarrow bb2l2v$, BR=1.22%, huge irreducible tt background
- ATLAS is planning the fully hadronic channel
- Select events with 2 OS leptons (HWW ID) +2 medium b-tag jets
- Reject pairs in the Z peakBDTs to reject the background
- Mjj side bands to check the background
- 2D fit in (M_{bb}, BDT)

Giacomo Ortona

HH \rightarrow **bbZZ** and $\gamma\gamma\gamma\gamma$

- New entries in 2017! Only entering for resonant searches for now.
- Both targeting Moriond2017 for first public results

ΗΗ→γγγγ

- Inheriting from SM $H \rightarrow \gamma \gamma$, basically same strategy with loosen photon-ID
- Impressive resolution, almost 0 BR
- No estimate about sensitivity yet, but very few events in the signal region

HH→bbZZ→bb2l2j BR=0.15%

- Can use a lot of kinematic handles/recoils
- but a lot of jet combinatorial as well
- Analysis not finalised yet
- Good data/(private)MC agreement

Giacomo Ortona

hh→bbττ

- Bari-Pisa, Milano-Parigi (fully synchronised)
- $|\tau_{H}+|$ isolated leptons (e, μ, τ_{H})+2 b-jets
- 3 final states: $e\tau_H$, $\mu\tau_H$, $\tau_H\tau_H$
- Main bkgs: tt (from MC), QCD multijet (from data in control regions)

Resonant search:

- Limit on kinematic fit of the 4-body invariant mass
- 3 categories: I bjet, 2bjet, boosted b-jets category

Non-resonant analysis:

- kinematic BDT discriminant to reduce $t\overline{t}$
- visible/stransverse mass as final variable

hh \rightarrow bb $\tau\tau$: improvements

12.0 fb⁻¹(12.To)()

HIP mitigation alone will largely improve the sensitivity Other improvements targeting bkg discrimination:

- MVA τ_{H} isolation to remove QCD
- Resonant: BDT to reject tt

Giacomo Ortona

• Non-res: Jet categorisation to remove DY+light jets production and stransverse mass (MT2) as final variable

We expect large improvements once all the new features are included

Signal	Exp. limit for gg \rightarrow hh \rightarrow bb $ au au$ (fb)			
Signal	HH mass	MT2	MT2+MVA iso	
k _∧ = 1	436	279	204	
(SM)	(180xtheo)	(115 x theo)	(84 x theo)	
k _λ = 20	1313	1097	709	
	(6xtheo)	(5 x theo)	(3 x theo)	

hh \rightarrow bb $\tau\tau$: BDT and categorization

Events

8000

6000

4000

2000

CMS

preliminary

 $\begin{array}{l} bb \; e\tau_h \\ channel \end{array}$

Data

QCD

Drell-Yan

Other bkg

bkg. uncertainty

 $k_{\lambda} = 1 (SM) \times 5000$

tŦ

Resonant BDT goal: improve tt rejection while keeping performance stable against mass

- extension of the BDT training method used in the non-resonant analysis
- variables: angles (common to non-resonant BDT)+mT(1)+mT(2)
- Only for semi-leptonic channels

hh→bbbb

- Most sensitive channel (both for CMS and ATLAS)
- Different strategies for resonant/<u>non-resonant</u> (Bicocca)
- •3 b-tag online at trigger level, \geq 4 b-tag offline
- ATLAS over performing CMS (for now)

Resonant analysis:

Low Mass (m_H<400) and High Mass (400<m_H<1200) studied separately

Background shape estimation from data

Non-Resonant analysis: Background estimation from hemisphere mixing + BDT cut 2D fit on dijet masses Final limit: 342xSM (308 exp) ATLAS: 109xSM (with 3.2fb⁻¹) 29xSM (with 13.3fb⁻¹)

Giacomo Ortona

hh→bbbb

- Most sensitive channel (both for CMS and ATLAS)
- Different strategies for resonant/<u>non-resonant</u> (Bicocca)
- •3 b-tag online at trigger level, \geq 4 b-tag offline
- ATLAS over performing CMS (for now)

Resonant analysis:

Low Mass (m_H<400) and High Mass (400<m_H<1200) studied separately

Background shape estimation from data

Non-Resonant analysis: Background estimation from hemisphere mixing + BDT cut 2D fit on dijet masses Final limit: 342xSM (308 exp) ATLAS: 109xSM (with 3.2fb⁻¹) 29xSM (with 13.3fb⁻¹)

Giacomo Ortona

Room for improvements

Upgrades are being developed in the non-resonant analysis:

• BDT tuning and reduced mass MX = $M(4j)-M(jj_{H1})-M(jj_{H2})+250$ GeV

• ATLAS can benefit from 2 b-tag online ev. selection, analysis optimised for several years But the most important update to cover the gap will be the pixel upgrade: ATLAS got a factor 2-4 boost from their upgrade. We will get:

• Higher tracking efficiency

Giacomo Ortona

>10% improvement in b-tagging (for each b-jets)

2017 trigger: general request is HT increase at L1, need to assess the impact on bbbb After EYETS: How to fully exploit new pixels capabilities? Any contribution is welcome Summary: we are confident we can cover the gap with ATLAS, but a lot of work to do!

18

Coming soon: combination

channel		
bbbb	29 (38?)	342(308)
bbWW	-	410(227)
bbττ	-	208(172)
bbyy	117(161)	91(90)

lumi analysed @ 13TeV, obs(exp) non-resonant limitXSM

Plan in the HH group:

- All analyses are targeting Moriond 2017 for the update with the full 2016 dataset
- Needs coordination before Moriond (check overlapping signal/backgrounds, coordinate systematics, interpretation)
- Move to (CWR) right after the conference
- Use the time until EPS to prepare the combination of the channels
- After EPS start analyse extensions (VBF, finite width)

Giacomo Ortona

Future extrapolations

HH analyses are clearly a topic for HL-LHC

Studies have been prepared for ECFA, and are starting for the TDRs

All HH analyses are involved in TDRs, main focus on hh→bbbb

	HH	HH	HH	HH
	bbbb	bb $\gamma\gamma$	$\mathbf{b}\mathbf{b} au au$	bbWW
Tracker TDR	\checkmark			
Muon TDR				
Barrel Cal TDR	\checkmark	✓	\checkmark	\checkmark
Endcap Cal TDR				

ECFA exercise.

Underestimates the possible performances, mostly because larger statistics will improve the background estimation, and does not include all the 2016 improvements.

Giacomo Ortona

Open points

People are targeting certain channels mostly because of what PAG/POG they belong to or have expertise with.

- This left out a lot of interesting possibilities
- Interesting channels we are missing: WW $\tau\tau$, bbWW with hadronic final state, maybe WW $\gamma\gamma$
- TDRs: we are preparing the MC, studies will start right afterwards
- 2017 preparation: HLT studies are starting, will need to study new thresholds and b-tag performances
- A lot of extensions are planned, but not yet included, mostly due to lack of manpower
 - (anomalous) VBF production (up to 15% final cross-section), finite width resonances, single Higgs combination...
 - Theoreticians are coming up with suggestions at a faster pace then what we can implement
- The HH is mostly **work in progress**. There's plenty of space for proposals! interpretation, channels, improvements, projections, MC...

Conclusions

- •The channels under study in CMS show a nice complementarity
- •We are covering several channels ATLAS does not have.
- Interest in HH is increasing more and more
- If you are interested, this is a good moment to join
- Ideally, there are a lot of channels to cover
- •The new pixels will have a big impact on HH analyses, especially 4b, and it is important in order to be competitive with ATLAS
- •CMS is trying to coordinate the efforts under the Higgs-EXO
- •Italy (Pisa, Bari, Milano Bicocca) is mostly active in bbbb and $bb\tau\tau$, but is also covering the combination, the trigger studies...

Still a long road before being able to directly probe the SM

BACKUP

Projections for resonant : bbbb

Typical BSM spin-0 production diagram

Projection of the sensitivity to the resonant HH production at 3 ab⁻¹ expected to be collected during the HL-LHC program. The projections are based on 13 TeV analysis performed with data collected in 2015. The 95% CL expected limits are provided for different spin-0 resonances masses assuming: preliminary analysis from 2015; Scenario 2 - reduced systematic uncertainties taking advantage of a larger data sample and upgraded detector; no systematic uncertainties. For each resonant mass the value of the mass scale $\Lambda_{\rm R} = \sqrt{6} \exp[-kl]\overline{M}_{\rm Pl}$ excluded at 95% CL is also provided.

$m_{\rm X}({ m TeV})$	Median expected		$\sigma_{\rm R}(\Lambda_{\rm R}=1{\rm TeV})$	$\Lambda_{\rm R}$ (TeV)	
	limits on σ (fb)		(fb)	excluded	
	$2.3\mathrm{fb}^{-1}$	ECFA16 S2+	Stat. Only		
0.3	2990	46	41	7130	13
0.7	129.4	7.3	3.4	584	8.9
1.0	81.5	4.4	2.4	190	6.6

• **CMS-PAS-HIG-16-002**: $gg \rightarrow X \rightarrow HH \rightarrow bbbb$

gg→hh parametrization

The relevant lagrangian terms of gg \rightarrow HH production in D=6 EFT

$$\mathcal{L}_{hh} = -\frac{m_h^2}{2v} \left(1 - \frac{3}{2}c_H + c_6 \right) h^3 + \frac{\alpha_s c_g}{4\pi} \left(\frac{h}{v} + \frac{h^2}{2v^2} \right) G^a_{\mu\nu} G^{\mu\nu}_a$$
$$- \left[\frac{m_t}{v} \left(1 - \frac{c_H}{2} + c_t \right) \bar{t}_L t_R h + \text{h.c.} \right] - \left[\frac{m_t}{v^2} \left(\frac{3c_t}{2} - \frac{c_H}{2} \right) \bar{t}_L t_R h^2 + \text{h.c.} \right]$$
arXiv:1410.3471

An EFT implementation for hh

The double Higgs production cross $R_{hh} \equiv \frac{\sigma_{hh}}{\sigma_{hh}^{SM}}$ section can be written as a function of the 5 EFT parameters: λ_{hhh} , y_t , c_2 , c_{2g} , c_g

 $= A_1 \kappa_t^4 + A_2 c_2^2 + (A_3 \kappa_t^2 + A_4 c_g^2) \kappa_\lambda^2 + A_5 c_{2g}^2 + (A_6 c_2 + A_7 \kappa_t \kappa_\lambda) \kappa_t^2$

 $+ (A_8 \kappa_t \kappa_\lambda + A_9 c_g \kappa_\lambda) c_2 + A_{10} c_2 c_{2g} + (A_{11} c_g \kappa_\lambda + A_{12} c_{2g}) \kappa_t^2$ $+ (A_{13} \kappa_\lambda c_g + A_{14} c_{2g}) \kappa_t \kappa_\lambda + A_{15} c_g c_{2g} \kappa_\lambda .$

JHEP 04 (2016) 126

2D (M_{HH},cos ϑ^*) signal shapes from different points in the 5D EFT phase space are clustered together.

12 clusters are identified according to there kinematical properties

Inside each cluster, a representative shape is identified, as the one with the minimum distance (in the test statistics) from all other shapes in the cluster

Each point of the phase space can be mapped by means of its cross-section and representative shape