B-physics and low p_T analyses the path to 2017

Alessio Boletti

Riunione CMS Italia 14-16 Dicembre 2016

・ロト ・回ト ・ヨト ・ヨト

A lot of run I analyses ongoing

- $B
 ightarrow {\cal K}^{(*)} \mu \mu$ angular analyses
- Structure in 4μ final state
- Precision B hadrons lifetimes
- Double onia production
- Charmonium + jet production
- $B^*_{s2}
 ightarrow BK$ study
- ...

 $B^0
ightarrow K^* \mu \mu$

Four-particle final state topology

- three decay angles: θ_K , θ_I , ϕ
- the square of dimuon invariant mass: q^2

$B^0 ightarrow K^* \mu \mu$

w

- Very complex 4D fit
- Angular PDF depends on 3 floating parameters (P_1, P_5', A_5^5)
- The real problem is that it can become negative for some values of these parameters
- The forbidden region can be found numerically, but not analytically
- Whenever MINUIT approaches the border, it fails or claims it as a minimum

$$\begin{split} \frac{1}{\Gamma_{full}} \frac{1}{dq^2 d\cos\theta_l d\cos\theta_k d\phi} &= \frac{9}{8\pi} \left\{ \frac{2}{3} \left[\left(Fs + As\cos\theta_k \right) \left(1 - \cos^2\theta_l \right) + A_s^5 \sqrt{1 - \cos^2\theta_k} \sqrt{1 - \cos^2\theta_l} \cos\phi \right] \right. \\ &+ \left(1 - Fs \right) \left[2F_L \cos^2\theta_k \left(1 - \cos^2\theta_l \right) + \frac{1}{2} \left(1 - F_L \right) \left(1 - \cos^2\theta_k \right) \left(1 + \cos^2\theta_l \right) \right. \\ &+ \frac{1}{2} P_1 (1 - F_L) \left(1 - \cos^2\theta_k \right) \left(1 - \cos^2\theta_l \right) \cos 2\phi \\ &+ 2P5' \cos\theta_k \sqrt{F_L \left(1 - F_L \right) \sqrt{1 - \cos^2\theta_l} \sqrt{1 - \cos^2\theta_l} \cos\phi} \right] \right\} \end{split}$$

イロト イヨト イヨト イヨト

-0.8 -0. -0.1

 $B^0
ightarrow K^* \mu \mu$

- To understand and solve the issue the 2D profile likelihood has been scanned in the $P_1 P'_5$ space
- In the result the colored regions highlight the $2\Delta NLL = 1$ and $2\Delta NLL = 4$ borders
- The missing points corresponds to failed fits

- A Feldman-Cousins approach has been required by the statistical committee, due to possible physical-boundary effects
- Anyway the 2D application of the approach to extract 1D intervals is very CPU intensive
- Now we are applying an approximated form, using parameter correlations from the likelihood

Run II ongoing analyses

- Angular analyses are already putting efforts to look at Run II data, as well
- New channels investigated: $B_s^0 \rightarrow \phi \mu \mu$ and $\Lambda_b \rightarrow \Lambda \mu \mu$
- Several cross-section measurements done with early 13 TeV data
- Double onia but also a more general low energy multi-lepton investigation
 - tetra quark, exotica, BSM hints
- The XPAG SMP-BPH first search for the $Z
 ightarrow \ell \ell J/\psi$ decay is joining
- $\bullet\,$ Early trigger studies are also ongoing for the $\tau \to 3 \mu$ search
- these first analyses are precious to understands the needs for the 2017 trigger and the PU effects

<ロ> (日) (日) (日) (日) (日)

Differential B^+ cross section

- Differential inclusive B^+ cross section measured with early 13TeV data
- The ratio between the cross sections at 13 TeV and 7 TeV computed
- A discrepancy with FONNL and pythia predictions was observed in some bins

A D > A B > A B >

Quarkonium production cross section

- Double differential quarkonium cross section measured with 2015 data
- Ratio with 7 TeV cross section calculated ۲
- p_T dependence is observed

・ロト ・回ト ・ヨト ・

 $B^0_{(s)} \rightarrow \mu \mu$

- Great expectation for the first result at 13 TeV
- Analysis on 2016 data aiming Moriond
- Three goals:
 - Cross section $B_s^0 \rightarrow \mu\mu$
 - Lifetime B⁰_s → μμ
 Cross section B⁰ → μμ

 Effort involved to measure the differential f_s/f_d ratio

<ロト <四ト < 回ト < 回 > < 回

 Avoid dependence on LHCb measurement

 $B^0_{(s)} \to \mu\mu$

New MVA-based muon ID

- Increased number of input variables
- ROC curve with old and new discrimination performances
- Discrimination power improved
- The idea is to use two different working points for $B^0_s \to \mu\mu$ and $B^0 \to \mu\mu$

MVA validations ongoing

• Input variables and MVA output validated on data control channel

• • • • • • • • • • • • •

- Some discrepancies are under study
- Muon double-fake rate carefully studied

 $B^0_{(s)} \rightarrow \mu\mu$

- A study is ongoing to understand if the error on the flight-length is affected by pileup
- Instead of N_{PV} , the mean result is plotted as a function of the Δz between the reconstructed momentum of the candidate and the closest PV
- First results indicate that there is no dependence

$B^0_{(s)} ightarrow \mu \mu$ L1 seed

- The main L1 seed used was L1_DoubleMu0er1p4_dEta_Max1p8_OS
- At higher PU, the eta range is expected to be reduced
- Alternative cuts have to be studied

TripleMu L1 seed

- During the run moved from L1_TripleMu0 to L1_TripleMu5_0_0
- Seed used by:
- spectroscopy analyses
 - using a resonant J/ψ or Υ plus one other meson
 - the efficiency loss due to the p_T cut will be tested
- $\tau \rightarrow 3\mu$ search
 - penalised by any muon p_T cut
 - a ΔR or invariant mass cut could be considered

Preparazione del trigger 2017

L1 trigger

- Nel 2016 l'alta luminosita' ha imposto tagli sempre piu' duri su p_T e η dei seed muonici
- Per il prossimo anno c'e' l'idea di cambiare strategia e sfruttare intensivamente la possibila' di tagli in massa invariante e ΔR
- Primi studi in svolgimento per testarne la risoluzione e l'efficacia dei tagli
- Questo aumenterebbe il numero di seed necessari

Preparazione del trigger 2017

High level trigger

- Da riscrivere from scratch
- Ottima occasione per coinvolgere manpower nella pulizia e retuning dei path
- Gli analisti son stati contattati all'interno del PAG per prendersi carico degli studi necessari
- Soprattutto studi basati sui path del vecchio menu, ma anche alcune proposte per path originali stanno arrivando:
 - Path per analisi di $B_s^0 \to J/\psi \phi$, con $J/\psi \to \mu \mu$ senza displacement e opposite-side tag (muone, elettrone o b-jet)
 - Path per cross sections e analisi angolari con $J/\psi \rightarrow \mu\mu$ e long-living particle (K_s o Λ)

Contributi italiani

Analisi

- Lifetime MIB
- P5' MIB+PD (anche per Run2)
- onia TO+BA
- Amplitude analyses BA
- Upsilon(nS) production vs. charged particle multiplicity (BO)

Impegni e responsabilita'

- Convener & co-convenre
- Trigger office
- Tracking contact
- ARC

▲□→ ▲圖→ ▲温→ ▲温→

Double differential B^0 and B^0_s cross section

 $B^0
ightarrow J/\psi \ K^{*0}(K^+ \ \pi^-)$

$$B_s^0 \rightarrow J/\psi \ \phi(K^+ \ K^-)$$

$$B^0 \rightarrow J/\psi \ K^{*0}(K^+ \ \pi^-)$$

$$B_s^0 \rightarrow J/\psi \ \phi(K^+ \ K^-)$$

Raw signal yield in Pt and y bins

► ▲ 볼 ► 볼 ∽ Q ○
CMS Italia 2016 16 / 16

B^+ cross section

イロン イロン イヨン イヨン

CMS Italia 2016 16 / 16

Evidence of $\mu\mu\mu\mu$ resonance in $\Upsilon\mu\mu$ channel

$\Upsilon\Upsilon$ and $J/\psi J/\psi$ production

▶ < ≧ ▶ ≧ ∽ へ (~ CMS Italia 2016 16 / 16

イロン イロン イヨン イヨン

14

12

04

12

10

$Z \to J/\psi \ell^+ \ell^-$

