UPGRADE PERFORMANCE STUDIES GROUP

STATO DEGLI STUDI DI PERFORMANCE E FISICA PER LA FASE 2 E PIANI PER I TDR

Patrizia Azzi

CMS Italia @Spoleto Dicembre 15, 2016

GRAZIE PER IL FEEDBACK!

Main challenges

- Pileup
 - Increases the combinatorial complexity and rate of fake tracks
 - Adds extra energy to calorimeter measurements
 - Increases the amount of data that has to be read out in each BX
- Pileup Mitigation
 - High granularity detectors (trackers, calorimeters) needed to identify particles associated with the primary hard scatter collision vertex with high efficiency
 - Precise timing measurement can unambiguously associate both tracks and neutral energy clusters to each vertex, providing ultimate pileup mitigation (under study).

Main challenges

- Radiation damage
 - Detector elements and electronics are exposed to high radiation dose
 - Degrades signal, & limits life time of detectors
 - Requires new tracker, and endcap calorimeters, new forward muons
 - And replacement of most of the readout systems

CMS radiation dose map, neutron equivalent fluence and particle rates for luminosities of 3000 fb⁻¹ (integrated) and 5 x 10^{34} Hz/cm² (instantaneous)

CMS Phase 2 upgrade (2024/26)

granularity, low material

- budget
- coverage up to $|\eta|=3.8$
- track trigger at l1

- Track-trigger @L1

- HLT output ~7.5kHz

- L1 rate ~750kHz

Patrizia Azzi - CMS Italia@Spoleto 2016

SUMMARY OF STUDIES FOR ECFA WORKSHOP

► Object performance studies

- ► Updated wrt Technical Proposal.
- ► Using CMSSW 8_1_X

► Physics Projections/sensitivity studies

- ► Higgs properties
- ► Searches
- ► SM topics

►ECFA 2016 DPS Notes:

- CMS-DP-2016-064: https://cds.cern.ch/record/ 2221747?In=en
- CMS-DP-2016-065: <u>https://cds.cern.ch/record/</u> <u>2222084?In=en</u>
- PASs in progress (pre-approval this week and next week UPSG, ARC formed):
 - ► FTR-16-002 (FHIG)
 - ► FTR-16-005 (FSM)
 - ► FTR-16-006 (FNP)

in 2015

SD CERN-LHCC-2015-019

CERN-LHCC-2015-010

PREPARATION FOR TDRS

►In 2017 CMS is planning to publish the following TDRs:

- ► May 9: Tracker; Sep 12: Muon & Barrel Calo; Nov 28: HGCAL
- ➤For each TDR we propose a set of perfomance metrics and analyses which will focus on the improvements due the particular sub-detector.
 - Will use the FullSimulation and Reconstruction of the complete Phase2 detector with PU=200 as a baseline for most of the signal samples and some backgrounds

Tilted OT , Phase2 pixel, Phase1CALO, HGCAL, Timing, all Muon

- ► RECO output kept for now. MiniAOD in 2017
- For large backgrounds and signal scans (DM, SUSY) we will use Delphes retuned with the FullSim performance.
- Special samples will be produced also for trigger studies (L1 and HLT) interim document with a specific event content

PROPOSED TIMELINES & SUMMARY (DETAILS)

➤Tracker TDR

- most components in place now (820), pixel with extra disk and optimizer tracking might come in January.
- This might allow a very fast global validation round and starting production before Xmas break
 - validation of 900pre1 with PU=200 just coming in
- very likely a 2nd production around Feb/Mar 2017 (bug fixes, higher level objects, additional studies, more RECO functionality)

► Barrel CALO/MUON TDR

content to cut a release should be ready by March/April 2017

≻HGCAL TDR

- ► full reco planned to be ready by June 2017
- simClustering reco expected to be ready(validated) by March/April 2017

The possibility to have a single production for Muon/Barrel and HGCAL is still open even though not likely if we want to keep flexibility and efficiency.

Y² Chen,

TRACKER AND PIXELS- 900PRE1

S. Ahuja

/RelValSingleMuPt100Extended/CMSSW_9_0_0_pre1-PU25ns 90X upgrade2023 realistic v0 2023D4PU140-v1/*

Phase II Pixel simulation and development driven by A. Tricomi & E. Migliore — Implementation of geometry, simulation, realistic digitizer and local reco — Optimization and validation studies

Rechit position map as expected Cleary shows the Phase 2 geometry

Tracking has gone through a lot of improvement and fixes both for the material, pixel geometry and to improve the timing.

- ➤Still more optimization especially for the forward region has to happen. This will come later, hopefully in time to have new samples for tracking performance for the TDR.
 - The decision is that Physics studies would not be redone with this, maybe comments can be added in the text if needed.

Giuseppe Latino

PU=0

RAW Response: (PT_reco/PT_gen) vs genEta for PF AK4 CHS recojets

First PFjets in HGCAL

Patrizia Azzi - CMS Italia@Spoleto 2016

ELECTRONS – 900PRE1

Patrizia Azzi - CMS Italia@Spoleto 2016

but not bad for a first try!

Patrizia Azzi - CMS Italia@Spoleto 2016

MUONS - 900PRE1 PU=0 GLOBAL MUONS

Cesare Calabria

Jason Lee

- BLACK: ZMM events (PU0) in CMSSW_9_0_0_pre1, Extended2023D4
- BLUE: ZMM events (PU0) in CMSSW_8_1_0_pre16, Run2
- ORANGE: ZMM events (PU0) in CMSSW_8_1_0_pre11, Extended2023D1
 - Detectors are working as expected

D. Bloch

BTAG & TAUS – 900PRE1

U. Hussein

taus not reconstructed above $\eta = 2.5$ (cut hardwired) fix in progress. might not get in 820 though

L. Grey

STATUS AND PLANS FOR TIMING

J. Bendavid

➤New! Timing information to Delphes version: useful for Physics studies. Includes 4D vertexing and timing stamps for tracks and photons

► Planned studies with Delphes:

- start with the study of effects on Jet/Met and isolation
 - ► use flat resolution (30ps for neutral and 20ps for charged)
 - validate physics impact for low energy photon & tracks (as it has design implications)

► FullSim development: Results from 810pre15timing here

Muon Track Isolation w/ Timing

Improvement in prompt-muon signal very clear now. However, this points out that we must be very careful with background definitions in order to get a correct answer in 200PU.

in purple new studies compared to TP

MATRICE DI FISICA

Channel vs TDR/ Studies	H→ZZ →2μ2e, 4μ.4e	H→2µ	Н→2ү	H→2τ (VBF)	H→Inv.	Z(II)H(bb), HH→4b, 2b2τ, bbWW	Long Lived/ displaced	Β→ <i>μμ.</i> Β→φφ→ 4K	Top mass with J/ψ	DM (γ.jett)	VBS	Di-boson res.	VLQ (T→th)	FCNC tγ. 4t
Tracker														
Extension	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark		\checkmark					
Resolution	\checkmark	\checkmark						\checkmark						
PU			\checkmark	\checkmark										
B/tau-tag				\checkmark		\checkmark	\checkmark							
Track-trig								\checkmark						
Muon														
Extension	\checkmark	\checkmark					\checkmark	\checkmark	\checkmark					
Trigger							\checkmark	\checkmark						
Barrel Calo														
Reso e/ γ /jet	\checkmark		\checkmark			\checkmark				\checkmark	\checkmark			
PU mitig.			\checkmark											
SubStruct.												\checkmark	\checkmark	
Endcap														
Extension	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark								\checkmark
Forward jet				\checkmark						\checkmark	\checkmark		\checkmark	
Resolutions	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark			
PU mitig.			\checkmark							\checkmark				

TRACKER TDR PERFORMANCE CONTENT

- HIGHLIGHT: Tracker extension, increased object acceptances, momentum resolutions, mass resolutions, pileup mitigation.
- ► INTERESTING SIGNALS (Performance plots only)
 - ≻H→ZZ→2mu2e, 4mu,4e, H→ di-mu
 H->leptoni BO, BA
 - ► lepton acceptance efficiencies, momentum resolutions, mass resolutions
 - ≻ VBF H →2 taus, HH →2b2tau (), HH →4b () maybe also Z(→II)H(→bb)
 - b-tagging & tau-tagging performance in the forward region
 - > Long Lived particles displaced leptons and b-jets (with $c\tau < 1m$)
 - performance as a function of decay length, pT, eta
 - ► Bs/B0 \rightarrow 2mu (mass resolutions), Bs \rightarrow phi + phi -> 4K
 - highlight the need for L1 track trigger and mass resolution, low momentum tracking performance
- ► PU mitigation performance (PUPPI)
- ► Track trigger performance (organized by the L1 Upgrade Trigger Group):
 - ► include emulation for rates with and without the Track trigger (special samples production)
- ➤ Other possible topics: H→ di-photon, 4D vertexing with MIP timing (subject to timing layer being approved), Top Mass J/psi increased acceptance

PI, PD HH->bbττ Androsov, Bagliesi, Ciocci,Grippo, HH->4b Dell'Osso, Tosi Rizzi++(tk, btag)

MUON TDR PERFORMANCE CONTENT

HIGHLIGHT: Endcap chambers mu reconstruction, L1-trigger, displaced vertices, Extension: Muon and EC mu-tagging

►INTERESTING SIGNALS:

- ► $H \rightarrow ZZ \rightarrow 4mu$, $H \rightarrow di-mu$ (full analyses w/ projections)
 - emphasize lepton acceptance, efficiencies momentum resolutions, mass resolutions
- > Long Lived particles HSCP, & displaced leptons (with $c\tau > 1m$) BA
 - performance as a function of decay length, pT, eta)
 - emphasize trigger capabilities for unusual signatures
 - possibly would need some reco effort
- ➤ Bs/B0 →2mu (full analysis w/ projections)
- <mark>≻</mark> τ->3μ
- Top mass J/psi (full analysis w/projections)
 - emphasize increase in acceptance

► maybe possible to include SUSY (multileptons or dilepton edge analyses)

HSCP e OOT muons with RCP F. Primavera, D. Piccolo

BARREL CALORIMETER TDR PERFORMANCE CONTENT

HIGHLIGHT: Calorimeter designs, jets, missing Et resolution, jet substructure, Pileup mitigation, EB pointing & possibly timing resolutions,

►INTERESTING SIGNALS:

► $H \rightarrow ZZ \rightarrow 4e$, $H \rightarrow di$ -photon, $HH \rightarrow bbWW \rightarrow 2e+nu+bb$

- emphasize acceptance efficiencies, momentum resolutions, mass resolutions
- Dark Matter (mono photon, mono jets)
 - photon performance, missing Et, jets
- Vector Boson Scattering: Same Sign WW, and WZ ??
 - Iepton performance. Partial performance in barrel (see EC TDR)
- Diboson resonances
 - ► W tagging performance, substructure algorithm performance

➤Other possible topics: Lepton Flavor violation (multi lepton signatures), SUSY signatures

ENDCAP CALORIMETER TDR

HIGHLIGHT: Calorimeter designs, forward jet tagging, missing Et resolution, including EC clustering, pointing & timing resolutions, Pileup mitigation, muontagging

- All analyses below will be "full analyses with projections", as overlapping processes in previous TDRs may only show performances.
- ►INTERESTING SIGNALS:
 - ► $H \rightarrow ZZ \rightarrow 4e$, $H \rightarrow di$ -photon, $HH \rightarrow bb\gamma\gamma$, $HH \rightarrow bbWW \rightarrow 2e+nu+bb$, $Higgs \rightarrow invisible$
 - emphasize acceptance efficiencies, momentum resolutions, mass resolutions
 - ➤ VBF H→2tau, Vector Like Quarks (single production) T → tH
 - forward jets, top tagging, Higgs tagging
 - Dark Matter (mono photon, mono jets)
 - missing ET, VBF jets, jets and photon performance
 - Vector Boson Scattering: Same Sign WW, and WZ ?
 - forward jets, missing Et
 - PU mitigation performance
 - top+gamma FCNC and four tops
 - show increased acceptance.

TOPICS FOR A PROPOSED WRAP-UP PAPER

- ➤The TDRs are planned to be « slim » documents with only few analyses which emphasize the performance of the detectors. List shown is longer...and still not exaustive
- Interpretations, combinations, and other general studies that pertain to the Physics Case of the Phase2 should be collected and documented in a separate publication/paper (<u>LHCC supports a Yellow Book for now</u>):
 - Higgs Couplings
 - di-Higgs interpretations
 - ► top physics (mass, FCNC, four tops..)
 - topics in Flavor physics
 - unusual signatures (EXO)
 - SUSY projections
 - Heavy particle productions (W', Z', WW resonances, VLQ.. etc), use of jet substructure
 - ► Heavy Ion ?

STANDARD MODEL PHYSICS OPPORTUNITIES @HL-LHC

Examine Higgs boson and boundaries of the Standard Model

- precise determination of mass, couplings, decay modes
- searches for New Physics and dark matter

Need to understand SM processes

- production of γ, W, Z, or top quarks + jets
- always appear as irreducible or reducible background

Have their own intrinsic interest, e.g.

- SM electroweak parameters, tt cross section, ...
 - need improved theoretical understanding and inclusion in event generators
- improved determination of PDF
- searches for anomalous gauge boson couplings
- tests of the unitarity-cancellation mechanism in the SM
- top-quark mass

NEW M-TOP EXTRAPOLATIONS FROM CMS

HL-LHC top factory: 3B top pairs 1M single top

PAS FTR-16-006

Updated projections with 8 TeV analysis experience preapproved yesterday

- additional channels: single top, σ_{tt}, sec. vtx
- pile-up expected to be kept under control

*m*top measurements will be an important element of HL-LHC

MOTIVATION FOR VBS STUDIES

Electroweak $VV \rightarrow VV j j$ scattering

- via TGC, QGC or Higgs boson exchange
- cancellation \rightarrow sensitive probe of new physics
- distinct signature in detector, good S/B ratio (VV QCD, tt, V+jets, ...)

Run-1

PRL 113 (2014) 141803 PRL 114 (2015) 051801 Latest result

- fiducial $W^{\pm}W^{\pm}jj \rightarrow \ell^{\pm}\ell^{\pm} + \text{tag jets} + E_{T}^{\text{miss}}$
 - evidence of EWK production at 3.6 σ (1.9 σ), with 2.8 σ (2.9 σ) expected by ATLAS (CMS)
 - fiducial cross-sections with $\Delta\sigma/\sigma = 30\%$ (60%)
 - interpret as limit on anomalous QGC (or H^{±±}) 0

• $W^{\pm}V_{jj} \rightarrow \ell^{\pm} + had + tag jets + E_T^{miss}$

W

- $V = W, Z \rightarrow$ decaying hadronically
- reconstructed as 2 jets or 1 large-R jet

1609.05122 subm. to PRD

interpret as limit on anomalous QGC

OLD VBS STUDY FROM CMS

HERE CONSIDER ONLY FULLY LEPTONIC DECAYS OF THE VV

- now including all sources of background, including reducible and fakes
- report results as a function of data/MC fake rate scale factor
- expect $\Delta\sigma/\sigma \le 10\%$ for WW and WZ VBS and 2.75 σ for V_LV_L scattering

Sensitivity to different BSM scenarios

- generic no-Higgs scenario
- presence of additional dim-8 operators in EFT framework
- partial unitarization

Comparing scenarios (current, aged, upgraded)

detector upgrade recovering performance lost from ageing of CMS detector

CMS PAS SMP-14-008

OUTLOOK

► Validation of 820 release. XMAS production starting soon.

- ► First production ~3M events in RECO format. Useful for developments.
- need to retune high level objects algorithms. Excellent entry point for new people: work in contact with POGs, enhance synergy, share knowledge (EGM good example).
- OPENING: Looking for a PPD/PDMV contact person for Relval/production submission and validation coordination (currently Stefan Piperov)
- More productions planned: physics signal content will increase to more complex events by Spring once GED validated.
 - not all physics studies will fit in the TDRs (small documents this time)
 - make sure effort is rewarded with a publication (Yellow Book from LHCC?)

Italy contribution is present in crucial aspects of the Performance and Physics studies:

► Higgs, di-Higgs, Long lived & HSCP, track trigger, timing

Could have an even larger impact. Especially on very important topics that have now been abandoned after the TP (my choice, up for discussion):

- ► SM VBS
- heavy flavor

								??			??			
Channel vs TDR/ Studies	H→ZZ →2µ2e, 4µ.4e	H→2µ	Н→2γ	H→2τ (VBF)	H→Inv.	Z(ll)H(bb), HH→4b, 2b2τ, bbWW	Long Lived/ displaced	Β→ <i>μμ</i> , Β→φφ→ 4K	Top mass with J/ψ	DM (γ,jett)	VBS	Di-boson res.	VLQ (T→th)	FCNC ty, 4t
Tracker														
Extension	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark		\checkmark					
Resolution	\checkmark	\checkmark						\checkmark						
PU			\checkmark	\checkmark										
B/tau-tag				\checkmark		\checkmark	\checkmark							
Track-trig								\checkmark						
Muon														
Extension	\checkmark	\checkmark					\checkmark	\checkmark	\checkmark					
Trigger							\checkmark	\checkmark						
Barrel Calo														
Reso e/γ/jet	\checkmark		\checkmark			\checkmark				\checkmark	\checkmark			
PU mitig.			\checkmark											
SubStruct.												\checkmark	\checkmark	
Endcap														
Extension	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark								\checkmark
Forward jet				\checkmark						\checkmark	\checkmark		\checkmark	
Resolutions	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark			
PU mitig.			\checkmark							\checkmark				

TUTORIAL FOR PHASE2 (S. Braibant , J.Kieseler)

presented in Mumbai

https://indico.cern.ch/event/588034/

BACKUP

K. Pedro @ Phase2 Fullsim readiness workshop

PHASE2 DETECTOR NAMES AND WORKFLOWS

Calorimeters

C1: Run2 calo
 C2: HGCal v7 + Phase2 HCAL
 C3[†]: HGCal v8 + Phase2 HCAL

Timing layer • I1: no timing layer • I2[†]: LYSO

†: in development

Tracker

- T1: Phase2 tilted tracker v2016-04-12 w/ Phase1 (extended) pixel
 T2: Phase2 flat tracker v2016-04-12 w/ Phase1 (extended) pixel
- T3[†]: Phase2 tilted tracker v3.6.2 w/ Phase2 pixel v4.0.2.1

Muon

 M1: Phase2 muon system (TP baseline) w/ GE21, ME0, RE3/1, RE4/1
 M2[†]: Phase2 muon system (for TDR) incl. granularity in ME0

- $\circ D1 = T1 + C1 + M1 + I1$
- O D2 = T2 + C1 + M1 + I1
- O D3 = T1 + C2 + M1 + I1
- \circ D4 = T3+C2+M1+I1
- \circ D5 = T1+C2+M1+I2
- O D6 = T1 + C1 + M2 + I1

Tilted OT , Latest pixel Phase2 CALO, HGCAL, Timing

- D4(D4_timing) is the default for the Tracker TDR
- D? = T3+C3+M2+I1/I2 will be the default for the HGCAL TDR end of next year

Seeding strategy

- Reviewing the seeding strategy with the goal to improve timing of at least a factor 10
- First step: migration Phase2 seeding to something based on current Phase1
- TRK-POG PRs are now merged in both 8_1_X and 9_0_X
- For Phase1 we moved forward from "quadruplets by triplet merging" in last spring

- $\rightarrow\,$ Compute the total χ^2 and reject hits above a χ^2 threshold
 - If many found hits, choose the one with smallest χ^2
- → 2X faster than "merging" !!
- → comparison of "quadruplets by triplet propagation" vs. "by triplet merging" for Phase1 presented here
- Then: retune and eventually improve efficiency in the forward region.
- This may require a new iterative strategy to isolate the very-forward region

EXPRESSION OF INTEREST FROM ITALIAN GROUPS

- ►BO-BA: H->4mu (tracker, muoni)
- ►BO, BA: H->4mu, tau->3mu con GEM F. Cavallo & Rosma Venditti
- Frascati: HSCP con RCP e muoni OOT Federica Primavera , Davide Piccolo
- ►PI-PD: HH->4b e HH->bbtautau (track trigger, tracker)
- ►MI-RM: H->gammagamma (timing)

HH4b – Future plans

High luminosity \Rightarrow high pileup (200 PU @ 7×10³⁴ Hz/cm²) New CMS detector

- Tracking at L1 trigger
- Pixel tracking up to η = 4
- Muon systems up to η = 2.9
- High Granularity Calorimeter up to $\eta = 3$
- Timing detector (?? not yet approved)
 - Central: thin LYSO+SiPM layer built into the tracker barrel support tube
 - Fwd: Thin layer of deep depleted APD's or LGAD

Olivera, D. Majumder, M. Dell'Osso, M. Tosi

Brand new experimental scenario -> hard to make guess based on 2016 results. new FullSim required.

Implementation of new sub-detectors in simulation is on-going.

-> Alexandra and Devdetta are producing generation cards for HH4b signals.

First step: Tracker TDR → study of new tracker on signal efficiency, especially on b-tag efficiency. Eventual study on ttbar and QCD with comparison with current cut flow. Goal: quantify improvements due to high luminosity, new btagging- tracking.

Second step: Cal TDR → 2016 analysis strategy will be reproduced -> bkg estimation is data-driven. Need to understand how to deal with this. QCD samples should not be enough due to lack of statistics, especially for non-resonant analysis flow.

In parallel it would also good to start thinking at new trigger scenarios.

SM HIGGS

\rightarrow H \rightarrow $\tau\tau$

- \blacktriangleright Experimental uncertainties: lepton, au_h , and jet energy scales
- > how do we project uncertainties to higher luminosities, is Delphes appropriate for say τ_h ?
- ► Theoretical uncertainties: Signal: ggH 1-jet acceptance

≻VH →bb

- Experimental uncertainties dominated by b-tagging
- Theoretical uncertainties: When reaching 10% uncertainty on b, signal systematics will become important (by the end of Run II). Signal (VH) uncertainty in Run I <10%</p>

≻ttH, H →bb

- Experimental uncertainties dominated by b-tagging, with a big statistical component
- Theoretical uncertainties: tt + X cross section; especially tt + bb
- > First projection exercise using the current systematic uncertainties.

► H → $\gamma\gamma$ / WW/ZZ

- ▶ systematics: many of them scale with luminosity; $H \rightarrow ZZ$ lepton ID/reconstruction
- Theoretical uncertainties: WW differential cross section; FOR γγ mode. Largest contribution from ggH cross section; ggH + N jets contributing in VBF and ttH with 30-50 % uncertainty

BSM HIGGS

► DiHiggs (Ongoing for ECFA & longer term):

- Update of the TP results taking into account Run II analysis improvements
- Extrapolation of Run I & run II searches: Detector performance in HL-LHC environment needs to be taken into account (eg: PU rejection, btagging, tau performance)
- Some using full delphes analysis e.g. bbW Fi
- Revisit background studies for HL-LHC co

	Alleauy av			
1	Final state	Run1	Run2	HL-LHC,TP
	bbbb	>	>	X (*)
	bbττ	🖌 , 🖌	v , v	 ✓
	bbyy	 , 	X (*)	 ✓
	bbWW	×	>	 ✓
	Blue: resonant	(* ongoing)		

►MSSM HTauTau

- Run II analysis ongoing. Possible extrapolation to high luminosity in time for ECFA
- Model independent limit on cross-section+projections in MSSM benchmark scenarios in the mA-tanβ plane

► Charged Higgs

Early Run II searches results in preparation (Large variety of H± decays probed in Run I: tb, cs, τν (etc). Extrapolation planned for ECFA

"Maybe" for ECFA

BSM HIGGS

≻H/A→TTbar

- ► H,A→ttbar may not display itself as a bump but as a peak-dip structure in mttbar due to the interference of ottbar and ttbar background (arXiv:1511.05584). Knowledge of the mttbar differential distribution to 1% necessary
- Benefit from extended tracker (less dilution in spin correlation variables) and improved btagging
- Extrapolation from early Run II results (if on time for ECFA) and/or full delphes study later on
- Invisible Higgs searches (connection to DM)
 - CMS-HIG-14-038: trivial assessment of systematic extrapolation (const and sqrt(L)) improvement)
 - Update the extrapolations to incorporate Run II analysis
 - improvements (correlated background treatment in VBF, plans for shape analysis)
- ►LFV Higgs to Lepton Tau
 - Extrapolation of Run 2 search. Assessment of systematics and detector upgrade improvements
 - Ongoing selection optimisation and improvement of background extraction techniques (prior step for a ECFA extrapolation)
 - Longer term: Delphes analysis (beyond ECFA timeline)

► Several other channels under consideration

Extrapolation vs full analysis depends on the final state, realistic assessment of systematics Patrizia Azzi - CMS Italia@Spoleto 2016

SEARCHES

Dark Matter

- ► Classical Missing ET+X=jet channel
 - Monojet is the classical DM "reference model". Needs a scan of mediator and DM masses (= many samples),
- ►DM with forward jets:
 - new models
 - Effective operator interactions between
 - Dirac-type DM and W/Z bosons
 - \Rightarrow sensitivity in terms of scale Λ which goes as Λ^4
- ► Vector Like Quarks
 - ➤ Single production of VLQs e.g. T → tH, tag the forward jet
 - all hadronic/leptonic with boosted top, and boosted Higgs
- ►Multi-Bosons
 - can benefit from W-tagging at low pt (200-500) GeVGeV) and forward jets (VBF, VBS)

Patrizia Azzi - CMS Italia@Spoleto 2016

Forward region is important!

NOT for ECFA

STANDARD MODEL

- \succ sin θ_W from Z forward-backward asymmetry
- ► Vector Boson Scattering:
 - ► short term: incremental approach
 - redo the study with the simulation corresponding to the actual expected HGCal performances
 - ► add b-tagging up to large eta: this would reduce the ttbar bkg in the WW analysis
 - Iong term: new developments
 - ► add semi leptonic channels (with boosted technology)
 - ► add fully leptonic ZZ final states
 - rethink longitudinal scattering studies w/ a dedicated approach, as opposed to the signal-search performed so far
- ► Flavor Physics:
- **≻**Β→*μ*μ
 - A reprise of the studies done for the TP, baseline plan is to deliver the same results with an updated setup
 - Spin-of of the current measurement done for run-2 (same group working on both)
- ►Bs→ $\phi\phi$ →KKKK
 - L1 Track Trigger study and possibly an estimate of the final analysis sensitivity
- ► τ→μμμ
 - Analysis group currently focused on Run-2 measurement

TOP QUARKS

► Top mass using J/Psi endpoint method

- correlation between Mt and the invariant mass of the J/Psi +lepton combination
- Extrapolate using the Run 2 result
- FCNC in single top + Z/photon production: tqGamma, tqZ, tqg

► Four-top production "Maybe" for ECFA

- ≻Top EW couplings: : Ztt, γtt
 - probe the EW dipole couplings of the top quark with photon.

NEW PHYSICS TOPICS – QUICK HIGHLIGHT

►Long Lived Particles

Extrapolation using Run2 analyses: displaced dijet analysis and the HSCP analysis possible choices

- Aark photons with displaced muon jets is a benchmark analyses for the muon upgrade
 - Neutral naturalness results in displaced di-Higgs produced via mirror glueballs, leading to two displaced b-bbar pairs as the final state signatures.
 - ► <u>No need of specific models: can study parameterized performance</u>
- ≻On the detector side:
 - muon trigger studies are ongoing and will be of great benefit for the LL searches.
 - improving tracking resolution and efficiency to reconstruct displaced tracks and vertices beneficial to most LL searches
 - HGC could give more directional information for identifying jets produced at displaced vertices
 - fast timing detector has huge potential for all LL analyses, most obviously displaced photons
- ► Jet Substructure
 - understand the performance of observables with increased pileup W/Z/H tagging