

Status of MonteCarlo simulations of signals and backgrounds at the LHC

CMS Italia Spoleto

Marco Zaro LPTHE - Université Pierre et Marie Curie Paris - France

Slide from Rikkert Frederix, LHCP16

Why NLO Monte-Carlos?

- NLO corrections improve the trustworthiness of simulations and give reliable predictions of rates and shapes
- NLO is the first order for which theoretical uncertainties (scale and PDF) are reliable
- Matching to PS makes it possible to have a fully-differential description of the final state
- This gives a better understanding of data, together with less need of fine-tuning
- Most of modern NLO MonteCarlos strongly rely on automation, which hides computational complexity to the final

user

Powheg(Box): Alioli, Nason, Oleari, Re

Powhel: Bevilacqua, Garzelli, Kardos, Trocsanyi, Worek

Sherpa(+Openloops): Krauss, Schonherr, Siegert + Kallweit, Lindert, Pozzorini, Maierhofer <u>MadGraph5_aMC@NLO: Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Shao, Torrielli, MZ</u>

Marco Zaro, 16-12-2016

- In general, all processes up to 2→4 can be simulated on clusters; unweighted events can be generated within (several) hours
 Current record: tt+3jets Sherpa+Openloops, Hoche et al, arXiv:1607.06934
- Calculation of scale and PDF uncertainties can be done on the fly. No need of extra runs

- In general, all proces unweighted events c
 Current record: tt+
- Calculation of scale of extra runs

ed on clusters; al) hours :1607.06934 done on the fly. No need

- In general, all processes up to 2→4 can be simulated on clusters; unweighted events can be generated within (several) hours
 Current record: tt+3jets Sherpa+Openloops, Hoche et al, arXiv:1607.06934
- Calculation of scale and PDF uncertainties can be done on the fly. No need of extra runs
- Unstable particles can be decayed preserving (tree-level) spin correlations Frixione, et al, arXiv:hep-ph/0702198; MadSpin:Artoisenet et al, arXiv:1212.3460; Decayer: Garzelli et al, arXiv: 1405.5859

- In general, all processes up to 2→4 can be simulated on clusters; unweighted events can be generated within (several) hours
 Current record: tt+3jets Sherpa+Openloops, Hoche et al, arXiv:1607.06934
- alculation of scale and PDE uncortainties can be done on the fly Ne need NLO Spin correlations on NLO Spin correlations on 0.6 0.6 LO Spin correlations on --NLO Spin correlations off NLO Spin correlations off LO Spin correlations off **IS** 0.55 0.55 1/σ dσ/dcos(φ) 1/σ dσ/dcos(φ) 0.5 0.5 0.45 0.45 Pseudoscalar Higgs Scalar Higgs 0.4 0.4 -0.5 0.5 0.5 0 -0.5 0 -1 -1 1 $\cos(\phi)$ $\cos(\phi)$

- In general, all processes up to 2→4 can be simulated on clusters; unweighted events can be generated within (several) hours
 Current record: tt+3jets Sherpa+Openloops, Hoche et al, arXiv:1607.06934
- Calculation of scale and PDF uncertainties can be done on the fly. No need
 of extra runs
- Unstable particles can be decayed preserving (tree-level) spin correlations Frixione, et al, arXiv:hep-ph/0702198; MadSpin:Artoisenet et al, arXiv:1212.3460; Decayer: Garzelli et al, arXiv: 1405.5859
- Recently, techniques to generate e.g. off-shell top quarks have been developed. Steep increase in computational complexity Jezo et al, arXiv:1509.09071 & 1607.04538; Frederix et al, arXiv:1603.01178

- In general, all processes up to 2→4 can be simulated on clusters; unweighted events can be generated within (several) hours
 Current record: tt+3jets Sherpa+Openloops, Hoche et al, arXiv:1607.06934
- Calculation of scale and PDF uncertainties can be done on the fly. No need
 of extra runs
- Unstable particles can be decayed preserving (tree-level) spin correlations Frixione, et al, arXiv:hep-ph/0702198; MadSpin:Artoisenet et al, arXiv:1212.3460; Decayer: Garzelli et al, arXiv: 1405.5859
- Recently, techniques to generate e.g. off-shell top quarks have been developed. Steep increase in computational complexity Jezo et al, arXiv:1509.09071 & 1607.04538; Frederix et al, arXiv:1603.01178
- Similarly to LO (MLM/CKKW) techniques exist to include higher multiplicities and generate merged samples of events
 Minlo: Hamilton, Nason, Zanderighi, arXiv:1206.3572; FxFx: Frederix, Frixione, arXiv:1209.6215; UNLOPS: Lonnblad, Prestel, arXiv:1211.7278; MEPS@NLO: Schonherr, Hoeche, Krauss, Siegert, arXiv:1212.0386

- In general, all unweighted ev Current record
- Calculation of a of extra runs
 Unstable part
- Unstable part Frixione, et al, arXiv: 1405.5859
- Recently, tech developed. Ste Jezo et al, arXiv:1509
- Similarly to L(multiplicities a Minlo: Hamilton, Nas UNLOPS: Lonnblad,

FxFx merging for Higgs production with mt/mb effects

Frederix, Frixione, Vryonidou, Wiesemann, arXiv:1604.03017

 Higgs boson production in gluon fusion, with FxFx merging (up to +2j) and exact top/bottom mass effects in the loops (except for the 2-loop amplitudes)

FxFx merging vs data:

Disclaimer

- Automation does not mean that everything is settled!
- There are still many things to understand for NLO+PS calculations
- Comparison with data crucial to validate tools

Complex backgrounds to ttH

Complex backgrounds for ttH: ttV

- ttV(V=W,Z, γ): simulation-wise, well within reach of NLO+PS generators
 - Cross-section known up to NLO QCD+EW (V=W,Z) Frixione, Hirschi, Pagani, Shao, MZ, arXiv:1504.03446
 - + I j can be included with NLO merging

Complex backgrounds for $t\bar{t}H$: ttV

- NLO corrections are huge for the $p_T(t\bar{t})$
- This is due to configurations where the $t\bar{t}$ pair recoils against a hard jet (and a soft V).
- or corrections also at ^{fig}d do Probably not: ttWj receives rather small⁰ corrections at NLO This also happens f
- This also happens for $t \bar{t} VV$

Complex backgrounds for tTH: tTVV

- All $t\overline{t}$ +VV processes studied at NLO+PS accuracy
- NLO corrections essential for realistic phenomenology
- Detailed study in the context of ttH searches Maltoni et al, arXiv:1507.05640

 $K(\mu_g)$

 $K(\mu_a)$

 $K(m_{\rm f})$

 $R(\mu_a)$

 $R(m_{t})$

0.6

0.6

1.4

0.6

0.8

0.8

0

50

Complex backgrounds for ttH: ttbb

- ttbb: among the most difficult processes for MCs
 - Mass effects are crucial to fill all the phase-space and to cover all kinematics configurations (boosted H→bb, b-jets outside acceptance, ...)
 - Calculations with mb=0 need unphysical cuts to have predictions also in the 1-b bin
 - g→bb splitting can affect rate in the M_{bb}~120 GeV region Cascioli et al, arXiv:1309.5912

Spin correlations:

not only for the Higgs properties

Amor dos Santos et al. arXiv: 1503.07787

Spin correlations can be used to separate S (tTH) and B (tTbb)
 Check robustness of variables against PS / detector simulation
 Dilepton decays allow for good reconstruction of top/W

Product of cosines can be used for S/B discrimination

ttbb with massive b-quarks

Cascioli et al, arXiv:1309.5912

		ttb	ttbb	$ttbb(m_{bb} > 100)$
	$\sigma_{\rm LO}[{\rm fb}]$	$2644_{-38\%-11\%}^{+71\%+14\%}$	$463.3^{+66\%}_{-36\%}{}^{+15\%}_{-12\%}$	$123.4^{+63\%}_{-35\%}{}^{+17\%}_{-13\%}$
	$\sigma_{\rm NLO}[{\rm fb}]$	$3296^{+34\%}_{-25\%}{}^{+5.6\%}_{-4.2\%}$	$560^{+29\%}_{-24\%}{}^{+5.4\%}_{-4.8\%}$	$141.8^{+26\%}_{-22\%}{}^{+6.5\%}_{-4.6\%}$
	$\sigma_{ m NLO}/\sigma_{ m LO}$	1.25	1.21	1.15
	$\sigma_{\rm MC}[{\rm fb}]$	$3313^{+32\%}_{-25\%}{}^{+3.9\%}_{-2.9\%}$	$600^{+24\%}_{-22\%}{}^{+2.0\%}_{-2.1\%}$	$181.0^{+20\%}_{-20\%}{}^{+8.1\%}_{-6.0\%}$
	$\sigma_{ m MC}/\sigma_{ m NLO}$	1.01	1.07	1.28
without g→bb splittings in the shower	$\sigma_{\rm MC}^{\rm 2b}[{\rm fb}]$	3299	552	146
	$\sigma_{ m MC}^{ m 2b}/\sigma_{ m NLO}$	1.00	0.99	▼1.03

PS effects are 4x larger in the Higgs signal region than for the total cross section

Turning $g \rightarrow bb$ splittings off in the shower brings the effects in the Higgs signal region to similar values as for the total cross section

ttbb with massive b-quarks

ttbb tool comparison

YR4: arXiv:1610.07922

- A comparison of the existing tools has been performed in the YR4
- To be regarded as a starting point, more detailed studies are required
 - Comparison at parton-level only (shower without hadronization)
 - Shower parameters have been modified with respect to the default values to ensure consistency between the various tools

ttbb tool comparison

YR4: arXiv:1610.07922

Selection	Tool	$\sigma_{\rm NLO}[{\rm fb}]$	$\sigma_{\rm NLO+PS} [{\rm fb}]$	$\sigma_{ m NLO+PS}/\sigma_{ m NLO}$
$n_b \ge 1$	SHERPA+OPENLOOPS	$12820^{+35\%}_{-28\%}$	$12939^{+30\%}_{-27\%}$	1.01
	MADGRAPH5_AMC@NLO		$13833^{+37\%}_{-29\%}$	1.08
	POWHEL		$10073^{+45\%}_{-29\%}$	0.79
$n_b \ge 2$	SHERPA+OPENLOOPS	$2268^{+30\%}_{-27\%}$	$2413^{+21\%}_{-24\%}$	1.06
	MADGRAPH5_AMC@NLO		$3192^{+38\%}_{-29\%}$	1.41
	POWHEL		$2570^{+35\%}_{-28\%}$	1.13

ttbb tool comparison

YR4: arXiv:1610.07922

Large discrepancies appear also in the signal region

How to improve?

- NNLO corrections far out of reach
- Are we bound to live with O(40%) uncertainties?
- Source of uncertainties: missing higher orders ($\mu_{R/F}$ variations) and details of the implementation (m_b effects, μ_{SH} , parton shower, matching scheme, ...); part of the problems are related to the low scale introduced by the bottom quark
- Can we learn something looking at simpler processes?

Marco Zaro, 16-12-2016

Single top

- Single-top production gives access to the initial state g→bb splitting
- The process is known to good accuracy
 - NNLO in the 5FS
 - NLO+PS in the 4FS
 - NLO w/ off-shell effects
- It would be interesting to have experimental analyses testing various MCs/showers at a differential level
- Don't limit to the top quark, look also at b jets...

Zbb:

- Keep on measuring Zbb, and publishing all possible variables!
- First Zbb@NLO+PS computed long time ago Frederix et al, arXiv:1106.6019
- 4FS predictions are considered superior for processes with b quarks... Is it true?
 5: CMS
- First CMS analyses published in 2013-2014
 - CMS, arXiv:1310.1349 (CMS-EWK-11-15)
 - CMS, arXiv:1402.1521 (CMS-SMP-13-004)
 - 4FS xsect lower than measurements

3-2014	r F
MG5F	$m_Z^2 + p_T^2(\text{jets})$
MG4F	$m_{\mathrm{T,Z}} \cdot m_{\mathrm{T}}(\mathrm{b,b})$
ALPGEN	$m_Z^2 + \sum_{\text{jets}} (m_{\text{jets}}^2 + p_{T\text{jets}}^2)$
aMC@NLO	$m_{\ell\ell'}^2 + p_{\rm T}^2(\ell\ell') + \frac{m_{\rm b}^2 + p_{\rm T}^2({\rm b})}{2} + \frac{m_{\rm b}'^2 + p_{\rm T}^2({\rm b}')}{2}$

Cross section	Measured	MadGraph	aMC@NLO	MCFM	MadGraph	aMC@NLO	
		(5F)	(5F)	(parton level)	(4F)	(4F)	
σ_{Z+1b} (pb)	$3.52 \pm 0.02 \pm 0.20$	3.66 ± 0.22	$3.70^{+0.23}_{-0.26}$	$3.03\substack{+0.30\\-0.36}$	$3.11\substack{+0.47\\-0.81}$	$2.36\substack{+0.47\\-0.37}$	
$\sigma_{\rm Z+2b}$ (pb)	$0.36 \pm 0.01 \pm 0.07$	0.37 ± 0.07	$0.29\substack{+0.04 \\ -0.04}$	$0.29\substack{+0.04\\-0.04}$	$0.38\substack{+0.06\\-0.10}$	$0.35\substack{+0.08 \\ -0.06}$	
σ_{Z+b} (pb)	$3.88 \pm 0.02 \pm 0.22$	4.03 ± 0.24	$3.99^{+0.25}_{-0.29}$	$3.23\substack{+0.34 \\ -0.40}$	$3.49\substack{+0.52\\-0.91}$	$2.71\substack{+0.52 \\ -0.41}$	
$\sigma_{Z+b/Z+j}$ (%)	$5.15 \pm 0.03 \pm 0.25$	5.35 ± 0.11	$5.38\substack{+0.34 \\ -0.39}$	$4.75\substack{+0.24 \\ -0.27}$	$4.63^{+0.69}_{-1.21}$	$3.65\substack{+0.70 \\ -0.55}$	
							A

Theoretical progresses

- Processes with b quarks in the initial scales are characterised by scales much lower than ŝ
 Maltoni, Ridolfi, Ubiali, arXiv: 1203.6303, +Lim, arXiv: 1605.09411
- The "correct" scale can be determined by looking at the logarithms that are appear in the 4FS after integrating the b quark phase space, which appear in the form

$$L(z,\hat{\tau}) = \log\left[\frac{M_H^2}{m_b^2}\frac{(1-z)}{\hat{\tau}}\right]$$

Kinematical suppression factor, which reduce the effective scale entering the log

• In particular

 $b\bar{b}H, M_H = 125 \,\text{GeV}: \qquad \tilde{\mu}_F \approx 0.36 \,M_H$ $b\bar{b}Z', M_{Z'} = 91.2 \,\text{GeV}: \qquad \tilde{\mu}_F \approx 0.38 \,M_{Z'}$ $b\bar{b}Z', M_{Z'} = 400 \,\text{GeV}: \qquad \tilde{\mu}_F \approx 0.29 \,M_{Z'}$

• What happens to bbZ if a lower scale is used?

The cross-section grows

A reduced scale increases the cross-section of ~ 1.3 (at 13 TeV)

Recent update from SHERPA

Krauss, Napoletano, Schumann, arXiv:161204640

4FS still low-ish, $\mu = m_T(Z)/2$ is used Better agreement for shapes

Conclusions

- NLO MonteCarlos are very powerful tools. Automation is crucial to make things simple for the final user
- Progress is going beyond NLO: NNLO+PS MCs and NNLO+PS with NLO+PS merging
- Despite this, there are still many aspects being understood or still to understand, in particular for processes with associated b quarks
 - Correct scale to use for the process
 - Description of extra $g \rightarrow bb$ splittings in the parton shower
- A solid understanding of these effects needs validation against data
- Which tools do a good job and which does not? Why?
- No measurement is useless!

Marco Zaro, 16-12-2016