

CMS Experiment at LHC, CERN Data recorded: Wed Jul 13 09:50:28 2016 CEST Run/Event: 276776 / 715087594 Lumi section: 433

Quale SUSY in 2017-18?

Cristina Botta, CERN Riunione CMS Italia 2016. Spoleto

The hunt for SUSY at LHC Runll

Standard (R_P conserved) SUSY:

- sparticles produced in pairs
- LSP undetected E_T^{miss}

Strong production

- intense hadronic activity and E_T^{miss}
- inclusive searches for gluinos, light-squarks
- dedicated searches for third generation squarks: stop, sbottom

• EWK production

- intense leptonic activity and E_{T}^{miss}
- charginos & neutralinos, sleptons
- Natural SUSY, compressed spectra
 - soft object, low E_T^{miss}
 - ISR, VBF, long lifetime searches
 - light stop, higgsinos

• Exotic SUSY: RPV

• No E_T^{miss}, resonant structures

On the verge of new territories

- Lumi /10, but big jump in cross section
- Inclusive 0-l, 1-l, 2-l searches
 - x ~20 for 1.3 TeV gluino (RunI limit for LSP→0 GeV, BR 100%), new exclusion reach: 1.6 TeV
 - x ~13 for 950 GeV light squarks (RunI limit for LSP→0 GeV, BR 100%), new exclusion reach: 1.2 TeV
- Dedicated 0-l, 1-l searches for third generation quarks
 - x ~10 for 800 GeV stop (Runl limit for LSP→0 GeV, BR 100%), reach same sensitivity ~ 800 GeV
- If natural SUSY is there it's not in the easy regions of the phase space

The ICHEP16 marathon

• Lumi x6!

 "EWKino and Compressed SUSY Event at the LPC" (April 2016) Electroweak and Compressed SUSY LPC Event

April 27, 2016

11

- Enough data at ICHEP to start matching the immense EWK program of RunI
- New searches to access the corners where Natural SUSY can still hide:
 - quasi-degenerate Higgsinos, compressed stop (m_{stop}-m_{LSP}<m_W)
- Plus extending the strong-production searches to new territories
 - reload of well established inclusive searches (hadronic, leptonic, photonic)

12.9 fb⁻¹ @ 13 TeV

o-l with H_T^{miss} SUS-16-014 **0-***ℓ* with M_T² SUS-16-015 SUS-16-016 $0-\ell$ with α_T SUS-16-017 SUS-16-018 1- ℓ with $\Delta \phi$ SUS-16-019 SUS-16-020 255-P 205-l SUS-16-021 SUS-16-022 3-l SUS-16-027 2-l stop 1-l stop SUS-16-028 SUS-16-029 o-l stop SUS-16-030 SUS-16-012 SUS-16-023 **EWK multileptons** SUS-16-024 EWK and stop soft 2OS-l SUS-16-025 EWK WH(1lbb) SUS-16-026 stop soft 1-*l* SUS-16-031 SUS-16-032 sbottoms/light stops (COMING SOON)

o-l+1-l with Razor (COMING SOON) 1-l with M_J (COMING SOON) What is still uncovered? o-l with top tagger h->γγ with Razor photons (GMSB)

Squarks and gluinos

- Three hadronic searches: veto leptons and look for jets and E_T^{miss}
 - all binned in N_{Jets}, N_{btags}, H_T, and E_T^{miss}-like
 - H_T^{miss}, α_T, M_{T2}

SUS-16-014/15/16

- O(100) search regions
- Trigger leads to typically > 200 GeV in E_T^{miss}

simplified models: 100% BR in decay chain, particles not involved are decoupled

Limits +200 GeV for modest LSP masses wrt pre-ICHEP

Gluinos with W bosons involved

• Single lepton search:

- one light lepton
- $N_{jet}>4$, $L_T(E_T^{miss}+p_T(\ell)) > 250 \text{ GeV}$
- Search variables
 - Δφ(E_T^{miss}+l,l) binned in L_T, H_T, N_{btag}, N_{jet}: **50 SR**
- Trigger: H_T + lepton (500, 25 GeV)

• SS dilepton search:

- 2-SS light leptons, N_{jet}>1, E_T^{miss}>50
- Search regions binned in H_T, E_T^{miss}, N_{btag}, min M_T(ℓ, E_T^{miss}), p_{Tℓi}: 68 SR
- Trigger: Di-lepton (17/23,8/12 GeV),
 Di-lepton + H_T (8,8,300 GeV)

A combined effort

What next - inclusive searches ?

Stop searches

- Most powerful searches: 0-l and 1-l
- Target different stop decay modes ($\Delta m(stop-LSP) > M_W$)
 - **o-l (SUS-16-029):** veto leptons, E_T^{miss}>250 (trigger), N_{bjet}^L>1 and N_{jet}>4
 - bins (60 SR): Low/high M_T(b12,E_T^{miss}), N_{jet}, N_{bjet}(1,2), E_T^{miss}
 - high M_T(b12,E_T^{miss}): 4 categories with top/W tags

SUS-16-030

SUS-16-028

10

Compressed stop

- Extension to low Δm(stop-LSP) < M_w of 0-ll analysis method A
 - interesting for Naturalness and DM co-annihilation (PhysRevD.70.015007)
 - 4body- decay (bffX₀¹) predicted to be dominant wrt 2body-decay (cX₀¹) for Δm>~20 GeV (arxiv 1408.4662)
 - stop pair recoils against ISR (N_{ISRJet} > 0), and LSP carries most of the momentum: soft b!
 - $N_{bjet}=0$, $N_{bjet}>0$ & $N_{bjet}^{L}=1$, $N_{bjet}>0$ & $N_{bjet}^{L}=2$ ($p_Tb>20GeV$), and bin in N_{jets} , $ISR_{jet}p_T$, E_T^{miss}
 - if b_{jets} are present, further categorisation in p_T(b), pT(b₁₂): **40 SR**

SUS-16-029

Also searches with 1-soft-lepton (SUS-16-031) and 2OS-soft leptons (SUS-16-025)

What next - compressed stop ?

 Other studies on going for Δm < 20 GeV, where soft c-tagging can be interesting

Electroweakinos: multilepton

- Typical signature: few jets, many W,Z,h,Ĩ, i.e. high lepton multiplicity or boson tagging
 - Multilepton search: e, μ, τ_h with E_T^{miss}, M(ll), M_T, M_{T2}, p_T(ll) as search variables
 - advanced technique for lepton identification
 - b_{jet} veto, E_T^{miss}> 50 GeV, leptonic trigger
 - main bkg: WZ, non-prompt leptons, conversions
 - 2lss for more compressed region, analysis strategy completely revised: 18 SR
 - **3l:** 2τ_h channel added: **88 SR**

Electroweakinos compressed

- Wino/Higgsinos mass degeneracy not accidental (unless they mix significantly)
 - Low higgsino masses are an ingredient of natural SUSY not yet challenged at LHC
 - likely mass-compressed and light X^o₂X[±]₁X^o₁ in natural SUSY (latest constraint from LEP)
 - interesting also for DM co-annihilation (PhysRevD.70.015007)
 - Difficult region because of **low E**_T^{miss} and soft decay product

 $\frac{\chi_2^0}{\chi_1^{\pm}} \chi_1^0$ $\Delta m \sim few \, GeV \, _$

New analysis: ISR + soft opposite-sign leptons + low E_T^{miss}

- ISR can lead to E_T^{miss} (mono-jet like)
- Soft lepton requirement reduce bkg up to 100.000
- NEW TRIGGER:
 - 2 opposite-sign muons, $M(\mu\mu)$ <60 GeV, E_T^{miss}
 - offline $E_T^{miss} > 125 \text{ GeV}, \mu_{pT} > 5 \text{ GeV}$
- Analysis much improved wrt RunI thanks to lower
 E<sub>T^{miss} and m(ll) binning
 </sub>

SUS-16-025

Electroweakinos: compressed spectra

- To reject main backgrounds:
 - b-veto, J/ψ and Y vetoes
 - $M(\tau\tau)$ > 160 GeV and tight IP cut on leptons
 - to reject DY->ττ
 - $M_T(\ell_i, E_T^{miss}) < 70 \text{ GeV}$

Electroweakinos: interpretation

First LHC results on EWKinos at 13 TeV extended and improved RunI searches, overcome previous sensitivity

Limits in $X_1^{\pm}=X_2^{\circ}$ vs X_1° plane (simplified model for X_1^{\pm}, X_2° production) with **Wino-like cross section** (Higgsino cross section not yet accessible)

> **3***I*, decay through sleptons (flavour democratic) $m_{slep}=0.5*(m_{X1\pm}-m_{X01})$

31, 21ss decay through sleptons (flavour democratic) $m_{slep} = 0.05^{*}(m_{X1\pm} - m_{X01})$

2los soft, heavy sleptons, decay through WZ (first coverage of dM 7.5-30 GeV, limit at 175 GeV for dM=7.5) Milestone for Higgsino searches at LHC

Electroweakinos: higgs tagging

- Typical signature: few jets, many W,Z,h,Ĩ, i.e. high lepton multiplicity or boson tagging
 - **Single Lepton + bb:** targeting WH(bb) decay of X_{1[±]},X₂^o
 - 60 < m(bb)<150, M_T(l,E_T^{miss}) >150
 - M_{CT} variable built with the b-jets > 150 (endpoint at m(t) for tt)
 - E_T^{miss} > 100 GeV

SUS-16-026

What next - Higgsinos ?

- With more data extend the current results (multilepton, 1lbb) for CN production with sleptons, WZ, WH + E_T^{miss} final states
- Finally access the Higgsino production
 - ZZ, ZH, HH + E_T^{miss} final states
 - Analyses already performed in Runl (SUS-13-006, SUS-14-002) which are being prepared for 2017
 - 2OS-l + E_T^{miss} + (b)jets for WZ,ZZ,ZH
 - bbbb + E_T^{miss} for HH
 - gg E_T^{miss} + jets or leptons (1,2) for WH,ZH,HH
- Completely new program about to start
 - in RunI exclusions limits are only set in the GMSB, where the LSP is an almost massless gravitino
 - for BR in ZG/HG = 1, excluded χ_i <380/360 GeV

What next - degenerate Higgsinos ?

What next - VBF ?

ICHEP 2016 12.9 fb⁻¹ Moriond 2017 36.5 fb⁻¹ lumi x3 End of 2018 (?) ~ 100 fb⁻¹ lumi x3

• The VBF production of EWKinos can be an alternative handle to the ISR topology to access compressed spectra

- VBF dijet topology with hard dijet p_T to reduce SM bkg
- Analysis just being proposed:
 - 1 or 0 soft-*l*, E_T^{miss} and jets (VBF+E_T^{miss}, VBF+μ triggers)
 - sensitivity with respect to ISR+soft-l analyses (E_T^{miss}, E_T^{miss}+µ triggers) not yet clear

What next - RPV ?

In conclusione

- Le ricerche inclusive di gluini e squarks hanno escluso la possibilità di Strong SUSY "Naturale" nella maggior parte dello spazio delle fasi
- Nel settore EWK, il programma di ricerche di Higgsini (WZ, ZZ, HZ, HH) è appena agli albori
- La quantità di dati di RunII fornisce la possibilità di esplorare con ricerche dedicate gli angoli più difficili da sondare dove può ancora nascondersi una SUSY "leggera"
 - stop leggeri e compressi con soft b(c)-tagging
 - higgsini leggeri con leptoni leptoni soft (ISR o VBF)
- E, se interessa, il programma di ricerche di SUSY in RPV e' molto scoperto

Photons + E_T^{miss}

- GMSB models give γ in the final state
 - from Bino X₁^o decay
 - target both EWKinos and gluinos
- No jets requirement, ≥ 1γ
- Search variables
 - $M_T(\gamma, E_T^{miss})$, E_T^{miss} significance, $S_T^{\gamma} = E_T^{miss} + \sum p_T(\gamma)$
- Main backgrounds V+γ
- Trigger: Single γ (p_T > 180 GeV)

- Probing strong produced SUSY with Razor and H->γγ
- Razor, and several categories
- Signal extraction: sideband fit within categories

Z-Edge: 2 opposite-sign leptons

• Extensive re-design w.r.t. 2015 result

- Introduced likelihood discriminator (NLL) for ttbar in off-Z analysis
 - $p_T(\ell \ell)$, $\sum m_{Ib}$, E_T^{miss} , $\Delta \phi(\ell \ell)$
- Baseline: 2 OSSF ℓ , E_T^{miss}>150, N_{jet}>1
 - on-Z: m(ll) in 81-101 GeV, bin in Njet, Nbjet, E_T^{miss}: 16 SR (also checked ATLAS excess SR)
 - off-Z: low and high m(ll), bin in NLL (95%/5% ttbar eff): 4SR (also checked CMS 8 TeV SR)
- Main backgrounds:
 - **Z+jets,** from γ+jets
 - ttbar (and other flavour-symmetric), from OF control sample
- Trigger: dilepton (offline 25/20 GeV)

SUS-16-021

Probing the full stop mass plane

Monojet or monojet+soft particles or VBF

