

Status and prospects of dark matter search

Marco Cipriani

Università di Roma La Sapienza e INFN Roma

Riunione CMS Italia 2016 - Spoleto

Searching for dark matter (DM)

3 types of searches, with high degree of **complementarity**

MET+X searches: $E_{\rm T}^{\rm miss}$ **DM** seen as missing transverse energy (**MET**) • Z'**X** is a Standard Model (SM) particle(s) from initial • state radiation (ISR) \rightarrow trigger on the event LERERERERE signal: excess of events in the high MET region recoil monoJet mono-manial monoTop ā g QQQQQQQQ χ ā χ one topology, monoPhoton many final states q

monoZ

Other interesting channels:

- multijet + MET
 - from Susy searches
 - gluinos/squarks decay to quarks and lightest supersymmetric particle
- $t\bar{t}$ + MET, $b\bar{b}$ + MET
- Higgs + MET
 - Higgs ISR suppressed
 - probe Higgs' coupling to DM
- dijet
 - MET-less, but provides DM interpretation

MET + (lots of) jets

MET + heavy quarks

monoHiggs

Typical analysis strategy in Run2:

- data driven estimate of irreducible backgrounds through many control regions (CR)
- **signal extracted through** a combined maximum likelihood fit in signal and control regions
 - typically fit E_T^{miss} distribution

(axial)vector mediator

Interpretation with simplified models

- □ Dark Matter Forum prescriptions \rightarrow arXiv:1507.00966
- □ benchmark of Run2 interpretation
- □ new mediator connecting SM and DM
- \Box free parameters: \mathbf{m}_{DM} , \mathbf{M}_{med} , \mathbf{g}_{DM} , \mathbf{g}_{q}

Interpretation with simplified models

- □ Dark Matter Forum prescriptions \rightarrow arXiv:1507.00966
- benchmark of Run2 interpretation
- new mediator connecting SM and DM
- □ free parameters: **m**_{DM}, **M**_{med}, **g**_{DM}, **g**_q

Assumptions:

- DM is a Dirac fermion
- DM produced on-shell in pairs
- minimal decay width for mediator
- minimal flavour violation
- g_{DM} = 1 and g_q = 0.25

Interpretation with simplified models

- □ Dark Matter Forum prescriptions → arXiv:1507.00966
- benchmark of Run2 interpretation
- new mediator connecting SM and DM
- □ free parameters: **m**_{DM}, **M**_{med}, **g**_{DM}, **g**_q

Assumptions:

- DM is a Dirac fermion
- DM produced on-shell in pairs
- minimal decay width for mediator
- minimal flavour violation
- $g_{DM} = 1 \text{ and } g_q = 0.25$

limits strongly depends on the couplings choice and model

- ightarrow change in couplings affects mediator's width
- \rightarrow more details: arXiv:1603.04156v1

Comparison of some channels $(g_1 = 0)$

dijet search dominates the picture (no DM production but limits on mediator mass)

Comparison of some channels $(g_1 = g_q)$

Z'(ee) most sensitive probe, if allowed.

Exclusion (or discovery) potential driven by couplings choice and M_{med}

Comparison of some channels (smaller g_l)

Exclusion (or discovery) potential driven by couplings choice and M_{med}

Comparison of some channels (smaller g_q and g_l)

Monojet dominates when coupling to DM bigger than that to quaks or leptons

Publications up to ICHEP dataset

analyses status presented at the EXO Workshop in Zurich \rightarrow https://indico.cern.ch/event/571620/

Mono-X channel	Dataset	Cadi line	Status	
jet / V (hadr)	12.9 fb ⁻¹ , 2016	EXO-16-037	CWR	
γ	12.9 fb ⁻¹ , 2016	EXO-16-039	PUB-Draft	
dijet *	12.9 fb ⁻¹ , 2016	EXO-16-032	Submitted to PLB	
Z(II)	2.3 fb ⁻¹ , 2015	EXO-16-010	FR	
Higgs(γγ)	2.3 fb ⁻¹ , 2015	EXO-15-011	CWR	
Higgs (b \overline{b})	2.3 fb ⁻¹ , 2015	EXO-15-012	(combined for publication)	
Higgs (ZZ→4I)	2.3 fb ⁻¹ , 2015	not yet	AN	
tī (dilepton)	2.2 fb ⁻¹ , 2015	EXO-15-028	PUB-Draft (combined with $b\overline{b}$ +MET)	
tt̄ (semilep + hadr)	2.2 fb ⁻¹ , 2015	EXO-16-005		
jet / V (hadr)	19.7 fb ⁻¹ , 2012	EXO-12-055	Accepted by JHEP	

* dijet not a MET+X search, but provides DM interpretation

Publications up to ICHEP dataset

analyses status presented at the EXO Workshop in Zurich \rightarrow https://indico.cern.ch/event/571620/

Mono-X channel	Dataset	Cadi line		
jet / V (hadr)	12.9 fb ⁻¹ , 2016	EXO-16-037	٦	
γ	12.9 fb ⁻¹ , 2016	EXO-16-039	\mathbf{F}	limited by
dijet *	12.9 fb ⁻¹ , 2016	EXO-16-032		systematics
Z(II)	2.3 fb ⁻¹ , 2015	EXO-16-010	1	
Higgs(γγ)	2.3 fb ⁻¹ , 2015	EXO-15-011		
Higgs ($b\overline{b}$)	2.3 fb ⁻¹ , 2015	EXO-15-012		limited by
Higgs (ZZ→4I)	2.3 fb ⁻¹ , 2015	not yet	Γ	statistics
tī (dilepton)	2.2 fb ⁻¹ , 2015	EXO-15-028		
tt̄ (semilep + hadr)	2.2 fb ⁻¹ , 2015	EXO-16-005	J	
jet / V (hadr)	19.7 fb ⁻¹ , 2012	EXO-12-055		

* dijet not a MET+X search, but provides DM interpretation

Next plans for publications

Sensitivity studies with 36.5 fb⁻¹ and plans presented at MET+X workshop

- → <u>https://indico.cern.ch/event/589460/</u>
- → all analyses aim at **publishing with full dataset for Moriond**
- → combine some channels for publication, but separate PAS
 - e.g.: monoH. H→ bb̄, ττ̄, γγ, WW, ZZ

Work in progress also toward combination of results from different analyses

Mediator:

(axial)vector \rightarrow combine monojet, dijet, dilepton (pseudo)scalar \rightarrow combine monojet, MET+tt, monoZ

Caveats

- nuisances correlations
- overlaps of signal and control regions
- cross-signal contributions

Closer look at monojet

sensitive to wide range of processes

(axial)vector mediator:

monojet is the most sensitive channel

(pseudo)scalar mediator:

• tt+MET has higher sensitivity

Fermion Portal Model

Recent monojet development: VBF H→inv

I monojet main focus on DM mediator coupling only to fermions

analysis already limited by systematics

I new models consider also possible coupling to vector bosons

- Scalar singlet model with mixing (SMM) \rightarrow arXiv:1607.06680v2
- H(inv) interpretation already explored by monojet:
 - BR(H→inv) < 0.44 @ 95% CL (12.9 fb⁻¹)
- VBF channel expected to be the most sensitive

introduce VBF topology as a 2-jets category in the monojet analysis

Benchmark: VBF H₁₂₅(inv)

- distinctive topology: two high pT forward jets and MET
- good S/B

main backgrounds: V+jets (V = Z,W)

- V+jets QCD: jets from α_{QCD}
- V+jets EWK: jets from α_{EWK}

Recent monojet development: VBF H→inv

Discriminating variables:

- MET does not separate signal and background
- $\Box \Delta \eta_{j1,j2}$ and $M_{j1,j2}$ are good variables (correlated)
- other variables are $\Delta \phi$ (jets,MET) and $\Delta \phi$ (j1,j2) (embed information on boson's spin)

□ VBF H(inv) analysis already existing (HIG-PAG)

• expected limit: $BR(H_{125} \rightarrow inv) < 38.2 \% (12.9 \text{ fb}^{-1})$

u monojet group explored improvements to analysis

- different selection
- shape analysis on $M_{j1,j2}$ or $\Delta \eta_{j1,j2}$
- more CRs to constrain main backgrounds
- preliminary results: BR(H₁₂₅→inv) ≤ 20-25 %
 - still room for further improvements

Other promising channels

MET+tt:

- top pair decays hadronically or (semi)leptonically
 - currently separate analyses
 - work in progress toward combination for publication

MET+H

probe Higgs coupling to new physics

- 2 Higgs doublet model: Z' decays to H and a CP-odd A⁰
- Z' Baryonic: Z' radiates a H and decays to DM

\Box H(bb) and H($\gamma\gamma$) combination done with 2015 data

\Box **b** \overline{b} , $\tau\overline{\tau}$, $\gamma\gamma$, WW, ZZ channels combination for 2016

• $b\overline{b}$, $\tau\overline{\tau}$ drive sensitivity

Great potential and much to gain from increasing dataset for both channels → some of the main bets for the future

What next ...

BACKUP

What do we know about dark matter?

many evidences of dark matter (DM) from astrophysical observations

particle nature of DM a big assumption, though very natural

D properties of DM:

- gravitational influence on ordinary matter
- **neutral** under electromagnetic or strong interaction
- stable on universe lifetime scale

assume DM interacts weakly with Standard Model (SM) particles

 \rightarrow Weakly Interacting Massive Particle (WIMP)

MET+X searches:

- DM seen as missing transverse energy (MET)
- X is a SM particle(s) to trigger on the event
- signal: excess of events in the high MET region

Backgrounds:

- genuine E_T^{miss} from **Z(vv)/W(lv)** (irreducible)
- E_T^{miss} from **energy mismeasurement** (reducible)

Typical analysis strategy in Run2:

- data driven estimate of irreducible backgrounds through many control regions (CR)
- **signal extracted through** a combined maximum likelihood fit in signal and control regions
 - typically fit E_T^{miss} distribution

ICHEP summary plots

monojet most sensitive channel for vector mediator direct searches more sensitive than collider searches for m_{DM} > few GeV

ICHEP summary plots

monojet most sensitive channel for axial-vector mediator collider searches more sensitive than direct searches everywhere

ICHEP summary plots

monojet and mono-tt most sensitive channels for (pseudo)scalar mediator

mono-tt has a better S/B ratio (note the different luminosity in the plot)

direct searches have much less or no sensitivity to this case

Summary table

CERN-CMS-DP-2016-057 https://cds.cern.ch/record/2208044

Limits at 95% CL for considered simplified model (theory uncertainties not included) V = vector; A = axial-vector; S = scalar; PS = pseudoscalar

Dijet limits

arXiv:1611.03568v1

28

Theory

Lagrangian for spin 1 mediator

arXiv:1603.04156v1

$$\mathcal{L}_{\text{vector}} = -g_{\text{DM}} Z'_{\mu} \bar{\chi} \gamma^{\mu} \chi - g_q \sum_{q=u,d,s,c,b,t} Z'_{\mu} \bar{q} \gamma^{\mu} q ,$$
$$\mathcal{L}_{\text{axial-vector}} = -g_{\text{DM}} Z'_{\mu} \bar{\chi} \gamma^{\mu} \gamma_5 \chi - g_q \sum_{q=u,d,s,c,b,t} Z'_{\mu} \bar{q} \gamma^{\mu} \gamma_5 q$$

Partial widths

$$\begin{split} \Gamma_{\rm vector}^{\chi\bar{\chi}} &= \frac{g_{\rm DM}^2 M_{\rm med}}{12\pi} \left(1 - 4z_{\rm DM}\right)^{1/2} \left(1 + 2z_{\rm DM}\right) \,,\\ \Gamma_{\rm vector}^{q\bar{q}} &= \frac{g_q^2 M_{\rm med}}{4\pi} \left(1 - 4z_q\right)^{1/2} \left(1 + 2z_q\right) \,, \end{split}$$

$$\begin{split} \Gamma_{\rm axial-vector}^{\chi\bar{\chi}} &= \frac{g_{\rm DM}^2 M_{\rm med}}{12\pi} \left(1 - 4z_{\rm DM}\right)^{3/2} \,,\\ \Gamma_{\rm axial-vector}^{q\bar{q}} &= \frac{g_q^2 M_{\rm med}}{4\pi} \left(1 - 4z_q\right)^{3/2} \,. \end{split}$$

$$z_{\mathrm{DM},q} = m_{\mathrm{DM},q}^2 / M_{\mathrm{med}}^2$$

Theory

Lagrangian for spin 0 mediator

arXiv:1603.04156v1

$$\mathcal{L}_{\text{scalar}} = -g_{\text{DM}}\phi\bar{\chi}\chi - g_q \frac{\phi}{\sqrt{2}} \sum_{q=u,d,s,c,b,t} y_q \bar{q}q ,$$
$$\mathcal{L}_{\text{pseudo-scalar}} = -ig_{\text{DM}}\phi\bar{\chi}\gamma_5\chi - ig_q \frac{\phi}{\sqrt{2}} \sum_{q=u,d,s,c,b,t} y_q \bar{q}\gamma_5q ,$$

Partial widths

$$\Gamma_{\text{scalar}}^{\chi\bar{\chi}} = \frac{g_{\text{DM}}^2 M_{\text{med}}}{8\pi} \left(1 - 4z_{\text{DM}}^2\right)^{3/2}, \\ \Gamma_{\text{scalar}}^{q\bar{q}} = \frac{3g_q^2 y_q^2 M_{\text{med}}}{16\pi} \left(1 - 4z_q^2\right)^{3/2}, \\ \Gamma_{\text{scalar}}^{gg} = \frac{3g_q^2 y_q^2 M_{\text{med}}}{16\pi} \left(1 - 4z_q^2\right)^{3/2}, \\ \Gamma_{\text{scalar}}^{gg} = \frac{\alpha_s^2 g_q^2 M_{\text{med}}^3}{32\pi^3 v^2} \left| f_{\text{scalar}}(4z_t) \right|^2,$$

$$\Gamma_{\text{scalar}}^{gg} = \frac{\alpha_s^2 g_q^2 M_{\text{med}}^3}{32\pi^3 v^2} \left| f_{\text{scalar}}(4z_t) \right|^2,$$

$$\Gamma_{\text{scalar}}^{gg} = \frac{\alpha_s^2 g_q^2 M_{\text{med}}^3}{32\pi^3 v^2} \left| f_{\text{scalar}}(4z_t) \right|^2,$$

$$\Gamma_{\text{scalar}}^{gg} = \frac{\alpha_s^2 g_q^2 M_{\text{med}}^3}{32\pi^3 v^2} \left| f_{\text{pseudo-scalar}}(4z_t) \right|^2.$$

$$T_{\text{scalar}}^{gg} = \frac{\alpha_s^2 g_q^2 M_{\text{med}}^3}{32\pi^3 v^2} \left| f_{\text{pseudo-scalar}}(4z_t) \right|^2.$$

$$T_{\text{scalar}}^{gg} = \frac{\alpha_s^2 g_q^2 M_{\text{med}}^3}{32\pi^3 v^2} \left| f_{\text{pseudo-scalar}}(4z_t) \right|^2.$$

$$T_{\text{scalar}}^{gg} = \frac{\alpha_s^2 g_q^2 M_{\text{med}}^3}{32\pi^3 v^2} \left| f_{\text{pseudo-scalar}}(4z_t) \right|^2.$$

$$T_{\text{scalar}}^{gg} = \frac{\alpha_s^2 g_q^2 M_{\text{med}}^3}{32\pi^3 v^2} \left| f_{\text{pseudo-scalar}}(4z_t) \right|^2.$$

$$T_{\text{pseudo-scalar}}^{gg} = \frac{\alpha_s^2 g_q^2 M_{\text{med}}^3}{32\pi^3 v^2} \left| f_{\text{pseudo-scalar}}(4z_t) \right|^2.$$

Comparison to indirect searches

- vector, scalar mediator → spin independent (SI) cross section
- axial-vector, pseudoscalar mediator → spin dependent (SI) cross section

DM-nucleon scattering cross section

$$\sigma_{\rm SI} = \frac{f^2(g_q)g_{\rm DM}^2\mu_{n\chi}^2}{\pi M_{\rm med}^4}, \qquad \mu_{n\chi} = m_n m_{\rm DM}/(m_n + m_{\rm DM}) \qquad m_n \simeq 0.939 \,\rm GeV$$

vector:
$$\sigma_{\rm SI} \simeq 6.9 \times 10^{-41} \,\rm cm^2 \cdot \left(\frac{g_q g_{\rm DM}}{0.25}\right)^2 \left(\frac{1 \,\rm TeV}{M_{\rm med}}\right)^4 \left(\frac{\mu_{n\chi}}{1 \,\rm GeV}\right)^2$$

scalar:
$$\sigma_{\rm SI} \simeq 6.9 \times 10^{-43} \,\rm cm^2 \cdot \left(\frac{g_q g_{\rm DM}}{1}\right)^2 \left(\frac{125 \,\rm GeV}{M_{\rm med}}\right)^4 \left(\frac{\mu_{n\chi}}{1 \,\rm GeV}\right)^2$$

$$\begin{split} \sigma_{\rm SD} &= \frac{3f^2(g_q)g_{\rm DM}^2\mu_{n\chi}^2}{\pi M_{\rm med}^4} \,. \\ \text{axial-vector:} \qquad \sigma^{\rm SD} \simeq 2.4 \times 10^{-42} \,\, {\rm cm}^2 \cdot \left(\frac{g_q g_{\rm DM}}{0.25}\right)^2 \left(\frac{1\,{\rm TeV}}{M_{\rm med}}\right)^4 \left(\frac{\mu_{n\chi}}{1\,{\rm GeV}}\right)^2 \,. \end{split}$$
pseudoscalar: highly suppressed

Comparison of Run1 and Run2

CAVEAT: simplified model interpretation and different analysis strategy in Run2

Improvements in Run2

Background estimate

Exploring VBF signal properties

Exploring VBF signal properties

Outcome:

- M_{j1,j2} discriminates between VBF and ggH, VBF and QCD Z but not VBF and EWK Z
- Δη_{j1,j2} discriminates all modes → good candidate for a shape analysis
- VBF selection should reduce the ggH contamination (high purity category of monojet analysis dedicated to VBF)

Exploring VBF signal properties

MonoH combination

2HDM interpretation

$H(b\bar{b})$ most sensitive channel for MET+H

bb reconstructed as AK4, AK8 or CA15 jets

 \leftarrow Combination of $b\bar{b}$ and $\tau\bar{\tau}$ shown in plot