HV-CMOS Detectors in BCD8 Technology INFN

A. Andreazza⁵, A. Castoldi⁶, G. Chiodini³, M. Citterio⁵, G. Darbo², G. Gariano², A. Gaudiello², C. Guazzoni⁶, A. Joshi⁴, V. Liberali⁵, S. Passadore⁵, F. Ragusa⁵, E. Ruscino², C. Sbarra¹, A. Sidoti¹, H. Shrimali⁴, I. Yadav⁴, E. Zaffaroni⁵

¹INFN Sezione di Bologna, ²INFN Sezione di Genova, ³INFN Sezione di Lecce, ⁴Indian Institute of Technology Mandi, ⁵Università di Milano and INFN Sezione di Milano,⁶Politecnico di Milano and INFN Sezione di Milano

Introduction

This work describes the first pixel detectors realized with the BCD8 technology by STMicroelectronics. The BCD8 is a 160 nm process integrating bipolar, CMOS and DMOS devices and it is mostly used for automotive application. A version with 70 V voltage capability has been tested to evaluate its suitability for the realization of CMOS sensors with a depleted region of several tens of micrometer. Sensors featuring 250X50 μ m² pixels on a 125 Ω cm resistivity substrate have been characterized. The characterization shows a uniform breakdown at 70 V before irradiation and a capacitance of ~ 80 fF at 50 V reverse bias voltage. The response to ionizing radiation is tested using radioactive sources and an X-ray tune, reading out the detector with an external spectroscopy chain.

BCD8 Technology

• Availability of different devices integrated in the same process • Epitaxial process: can easily grow on different substrates. • Possible to reach thick depletion layers: 30 µm looks an optimal compromise between signal and material thickness of the detector • Long-term availability: one of the major production lines for ST automotive products.

References:

D. Riccardi et al., DOI: 10.1109/ISPSD.2007.4294935 R. Roggero et al., DOI: 10.1109/ISPSD.2013.6694422

CMOS Image Sensor

Requirements for HL-LHC applications: 0.1-1 Grad dose, 10¹⁵⁻¹⁶ n_{eq}/cm² NIEL (depending on

- detector radius)
- **Irradiation tests:**
- width: - length:
- ⁶⁰Co γ and 62 MeV p
- 10 100 µm 10 — 1 μm
- Small variation of transistor thresholds and transconductance

- 62 MeV p at LNS (Catania)
- Dose and NIEL compatible with requirements for
- operation at the HL-LHC (in the external pixel layers) Increase of breakdown voltage Reduction of junction capacitance(acceptors removal) • Sensitive volume increases with irradiaton

Second Prototype Submission: KE15AA

hreshold tuning

Vdd=1.8V

CMOS sensor with depletion layer:

- High-Voltage: • For depletion
- High-Resistivity Substrate
- Designed with 100% fill factor

Top Level Block-diagram: KC53AA

• First version of the prototype • An array of **8 pixels** and 4 passive diodes • Pixel area: **250X50 µm**² • Current Injection circuitry

Chip Layout: KC53AA

Procedure: Controlled Glue Thickness

Capacitively Coupled Pixel Detector

- **Pixel sensor** with integrated amplifier chain
- High-speed readout via a **r/o chip** capacitively coupled to the sensor (example: FE-I4 ATLAS chip)
- Capacitance con-trolled by SU8 spacers
- Planarity better than 1.5 µm peakto-peak
- (5 mm size ATLAS CMOS pixel collaboration prototype)

Deposition of SU8 photoresist by spinning

Control RAM DAC TEST STRUCTUR **Sensor Diode** Unit Pixel Layout: 250X 50 µm² Comparater Shaper CSA. ThresholdTuning RAM

Features of the submitted chip

- Compatible to FEI4;
- Area: 3X4 mm²

Unit

Passive Diodes 50X50 µm²

- 282 pixels containing complete chain
- Pixels containing self biased reference generators and PVT control circuitry
- Current injection circuitry to mimic the radiation effect
- Dummy pixels measurement possibilities:

50X50 μ m² and 250X50 μ m²

KE15AA: Pin Diagram and Floorplan

Sensor Characterization

Wafers:

- 6" CW silicon + 1 μ m Oxide + 1.2 Al 1%Si (no passivation)
- Different layouts: 24-32 capacitors (3-7 pF)

8th International Workshop on Semiconductor Pixel Detectors for Particles and Imaging Contact: hitesh@iitmandi.ac.in

