

A Prototype of a New Generation Readout ASIC in 65nm **CMOS for Pixel Detectors at HL-LHC**

E. Monteil^{1,2}, L. Pacher^{1,2}, A. Paterno'^{1,3}, S. Marconi^{4,13}, F. Loddo⁵, N. Demaria¹, L. Gaioni^{6,10}, F. De Canio^{6,15}, G. Magazzu'⁷, G. Traversi^{6,10}, A. Rivetti¹, M. Da Rocha Rolo¹, G. Dellacasa¹, G. Mazza¹, C. Marzocca^{5,8}, F. Licciulli⁵, F. Ciciriello^{5,9}, V. Re^{6,10}, L. Ratti^{6,15}, P. Placidi^{4,13}, A. Stabile¹¹, S. Mattiazzo¹², C. Veri¹⁴

Motivation

CHIPIX65 demonstrator

64x64 core

pixel array

Column-based

sLVS TX/RX, pads

bias network

Pixel detectors for HL-LHC experiments require the development of a new generation front-end chip to stand unprecedented radiation levels, very high hit rates and increased pixel granularity.

The main requirements for the HL-LHC detectors:

- Small pixels: 50x50 μ m²
- Large chips: 2x2 cm²
- Trigger up to 1 MHz with 12.8 µs latency (100x in both buffering and readout)
- For innermost layer:
 - \circ Pixel hit rate up to 3 GHz/cm²

CHIPIX65 project

Approved by INFN in fall 2013, with the goals of:

• Developing a CHIP for PIXel detectors using the 65nm CMOS technology for the first time in **HEP** experiments

: Pavia/Bergamo

: Pavia/Bergamo, Pisa

: Pavia/Bergamo, Pisa

: Torino, (Padova)

:Bari

: Pisa

Pisa

: Bari

Milano

: Milanc

: Lecce

- Propagate the use of the 65nm technology inside INFN
- 8 sections involved (Bari, Lecce, Milano, Padova, Pavia/Bergamo, Perugia, Pisa, Torino)
- Funding members of the CERN RD53 collaboration

Radiation characterisation	Band Gap
 x-ray machine at LNL / Pd-INFN) 	• DAC
 Total Ionising Dose (TID) 	 SLVDS driver
 1 <u>GRad</u> in ~ 2 weeks 	SLVDS receiver
 Low-p at CN accelerator LNL TID and Total Displacement damage TANDEM / SIRAD Single Event Effects - with Heavy Ion Studies on n-MOS, p-MOS 	• PLL
	• SER
	• DES
	Monitoring AD
 Irradiation of IP-block, Noise 	• SRAM EOC
measurements vs Irradiation	Dual Digital Ce
	• DC-DC

- Radiation: 1 Grad in 10 years
- Data readout up to 4-5 Gbs/s

Dimensions: 3.5 mm x 5.1 mm

64x64 pixels (50x50 μ m² each)

- Two analog FEs (asynch and synch)
- A novel digital architecture
- Bias network and monitoring
- Chip configuration based on SPI protocol

Design a small and complex pixel matrix

containing new solutions compatible with

- Usage of CERN I/O library
- Submitted in late June 2016

Design flow:

Features:

RD53A

- Digital-On-Top chip assembly
- Top-down hierarchical flow
- Pixel matrix composed of 16x16 pixel EOC digital bulk, SER Global DACs, BGR, regions (master and clone) monitoring ADC
 - A pixel region contains the digital architecture and the analog FEs

Analog front-ends

I_K=25, 50 nA C_F=10, 20 fF C_D=0, 50, 100, 150 fF injection discriminator curr. sel Cini=30 fF i_{inj}=Qδ(†) det cap sel global å 2 versions: 5 bit PMOS & MIN counter ToT Single ampli stage for minimum power dissipation clock Krummenacher feedback to comply with the expected large increase in the detector leakage current (up to ~10 nA) 30000 electron maximum input charge expected, ~450 mV preampli output dynamic range Selectable gain, recovery current and detector emulating capacitance

40 MHz clock, 5 bit dual edge counter, 400 ns maximum ToT

ASYNCHRONOUS ARCHITECTURE

- Two small prototypes submitted and tested
- Noise performance and response timing fully compliant with the specs
- No significant effects of leakage current (up to 15 nA) on signal shape and charge sensitivity
- TID irradiation performed up to 800 Mrad: minor changes in signal shape and charge sensitivity. About noise with C_{det} =50 fF: less than 10% increase in ENC after 500 Mrad, less than 20% after 800 Mrad

Digital architecture

Pixel region choice:

- Focused on a centralised fully shared latency buffer
- 4x4 pixel region
- Allows better sharing of resources like trigger matching Ο
- Number of memory locations/pixel should scale by a Ο factor of about 2

LATENCY BUFFER

The event inefficiency depends on the number of latency buffer locations: 16 locations have been used in the CHIPIX65 demonstrator determining inefficiency < 0.1 %

SUMMARY OF THE ARCHITECTURE PERFORMANCES

	Inefficiencies (digital) @ 3 GHz/cm ²	 Digital region operating modes Triggerless/triggered/debug Binary Only/5-bit-ToT High/Low deadtime (to match Slow of Fast ToT from analog)
Trigger latency	12.8 µs	
Particle loss	<0.1%	
Single pixel efficiency	99.9% (digitized 5-bit ToT info except for 0.4% with binary info only)	
Ghosts probability	<0.03%	 Total power: around 6 μW/pixel

SYNCHRONOUS ARCHITECTURE

- Two small prototypes submitted and tested
- Noise performance: • • ENC = 80 e- @ C_{det} = 50 fF for fast ToT (1 MIP in 150 ns)
- TID irradiation performed up to 600 Mrad
 - No significant variations in the Ο signal amplitude
 - 10% noise increase @ C_{det} = 50 fF
 - Fully working

- Offset compensation done with capacitors (no trimming needed)
- Fast ToT using the latch as a local oscillator (up to 800 MHz)

DAC LSB = 100nA DNL....(LSB) DNL___(LSB) INL...(LSB) INL_(LSB) • < 0.4 **Test results** < 0.15 < 0.45 <1 < 0.45 < 1.5

16-bit payload data

precision

535 µm

- 10-bit current steering DAC LSB = 100 nA
- 8+2 segmented DAC (2 binary weighted + 8 unitary decoded cells)
- Characterised in lab
- Irradiation tests at Padova X-ray machine showed no significant degradation

Conclusions

- CHIPIX65 is a INFN project with around 40 people and 8 institutes and is a very active part of the CERN RD53 collaboration
- Two analog VFE have been designed, tested and irradiated
- Several IP-blocks have been developed, tested and irradiated
- The chip contains a novel Pixel Region architecture with digital inefficiency <0.1% at the HL-LHC rate (3 GHz/cm²) and providing 5-bit ToT information of 99.6% of hits
- The CHIPIX demonstrator, containing a matrix of 64x64 pixels, is an intermediate step towards the RD53A prototype
- The chip has been submitted at the end of June 2016

¹ INFN Torino ² Università di Torino ³ Politecnico di Torino ⁴ INFN Perugia ⁵INFN Bari ⁶INFN Pavia ⁷INFN Milano ¹²Università di Padova ¹³Università di Perugia ¹⁴Università del Salento ¹⁵Università di Pavia

PIXEL 2016 – 8th International Workshop on Semiconductor Pixel Detectors for Particles and Imaging – Sestri Levante, September 5th-9th 2016