

1. GAMMA-RAY BURSTS & 2. GAMMA-RAY BINARIES

AT THE VERY HIGH ENERGY GAMMA-RAYS

TAM, Pak Hin (Sun Yat-sen University)

GAMMA-RAY BURST OBSERVATIONS AT 100 GEV: LESSONS LEARNT FROM FERMI/LAT

TAM, Pak Hin (Sun Yat-sen University)

collaborator: XiangYu Wang (NJU)

Torino, Italy 1/12/2016

MWL/GeV photons during GRB afterglow

GRB 090510

GRB 090926A

Swenson et al. (2010)

Abdo et al. (2010)

Very bright GRB 130427A

GRB 130427A emits many high-energy gamma-rays during the prompt & afterglow period, T₉₀-138s

arrival time (since T_0 , in sec)	energy (GeV)
18.4	72.6
22.9	10.3
47.3	27.5
64.2	11.2
80.2	12.3
84.5	25.8
140.8	21.2
213.7	11.4
217.2	14.9
242.8	95.3
256.0	47.3
610.3	41.4
3409.6	38.5
6062.3	18.6
34365.9	32.0

a 95 GeV photon arrived at To + 243s, corresponding to an intrinsic photon energy 128 GeV at z=0.34 Fan, Tam, et al. (2013)

Spectral evolution

$t-T_0$ (sec)	Power Law (PL) Γ	$\Gamma_1 \ (E < E_{\rm b})$	Broken Power Law (BPL) $\Gamma_2 \ (E > E_b)$	$E_{\rm b}~({ m GeV})$	Improvement of BPL over PL^a (σ)
$\begin{array}{r} 0-20\\ 20-138\\ 138-750\\ 3000-80,000\\ 138-80,000\end{array}$	$\begin{array}{r} -2.0{\pm}0.2\\ -1.9{\pm}0.1\\ -2.1{\pm}0.1\\ -2.1{\pm}0.1\\ -2.1{\pm}0.1\\ -2.1{\pm}0.1\end{array}$	$-2.2 \pm 0.1 \\ -2.6 \pm 0.7 \\ -2.3 \pm 0.2$	 -1.4 ± 0.2 -1.4 ± 0.2 -1.4 ± 0.1	$4.3{\pm}2.0$ $1.1{\pm}0.9$ $2.5{\pm}1.1$	 2.5 2.9 3.5
^a calculated as $\sqrt{2 \times [\log(\mathcal{L}_{BPL}) - \log(\mathcal{L}_{PL})]}$ Significance of broken power				ance of broken power la	

Tam et al. (2013)

Power law index doesn't change!

over power law

What did we learn from GRB 130427A?

- * Many very high-energy photons come from the afterglow phase,
- * and the 95 GeV photon was detected at 243s after the trigger,
- * So, afterglow 100 GeV photons are there.
- * However, is there any ~100 GeV during the prompt emission?

Very bright GRB 130427A

GRB 130427A emits many high-energy gamma-rays during the prompt & afterglow period, T₉₀-138s

73	GeV	*(I+Z)	=97	GeV
)			1	

arrival time (since T_0 , in sec)	energy (GeV)
18.4	72.6
22.9	10.3
47.3	27.5
64.2	11.2
80.2	12.3
84.5	25.8
140.8	21.2
213.7	11.4
217.2	14.9
242.8	95.3
256.0	47.3
610.3	41.4
3409.6	38.5
6062.3	18.6
34365.9	32.0

a 95 GeV photon arrived at To + 243s, corresponding to an intrinsic photon energy 128 GeV at z=0.34 Fan, Tam, et al. (2013)

Second component during prompt phase

10

(a)

GRB 090902B

GRB 090510

Abdo et al. (2009)

-10 sec after trigger

vF_v (erg/cm²/s) 10⁻⁵ 10⁻⁶ 10-7 Time-integrated photon spectrum (0.5 s - 1.0 s) 10-4 (b) 10⁻⁵ vF_v (erg/cm²/s) 10-6 0.5 s - 0.6 s: Band (B s - 0.9 s: Band 10 0.8 s - 0.9 s; Band (6 f 0.9 s - 1.0 s: PL (LAT d 10⁷ 10² 10³ 10⁵ 10⁶ 104 10 10 Energy (keV) 10 GeV

Ackermann, et al. 2010

-1 sec after trigger

Why bother the very highenergy photons of GRBs?

* The radiation mechanism is still under debate

- * The energy band where extragalactic background light (EBL) attenuation starts to modify the intrinsic spectra of the sources (e.g., AGN, GRBs)
- * At these energies, GRBs can be seen at distances further than those of AGN, because of the EBL

Historical observations of GRBs

- * Over the last twenty years or so, ground-based telescopes have not detected GRBs at significantly high confidence
- * Some early claims: GRB 970417A by MILAGRITO (2.7σ) , GRB 991208 by Tibet-ASγ (1.88σ, z=0.706) steep fall-off of optical flash like GRB 990123 was also seen
- * Not even MAGIC II/H.E.S.S. II/VERITAS/HAWC (yet)
- * High energy threshold (thus absorbed by the Extragalactic Background Light, EBL) is a major reason, other reasons include low sensitivity, time delay, etc. (see, e.g., Xue, Tam, et al., 2009).

HAWC is observing GRBs

- * With less than 1/3 of the array active, the HAWC observatory obtained limits for GRB 130702A, which is at a close redshift of z = 0.145, and a limit for GRB 130427A
- * Simulated HAWC light curve of GRB 090510

LHAASO opportunities

* Best instrument to observe GRB prompt emission at above -100 GeV

Maybe a good early science project

GRB observing modes by LHAASO-WCDA

* Shower mode, high threshold -100 GeV

- * Low multiplicity trigger mode can increase the sensitivity by a factor of a few, and lower the energy threshold to ~10 GeV, but background is huge
- * Single particle (scaler) mode, lowest energy threshold at -I GeV, but loose directional information

c.f. based on slides by Wu, H. given in Tianjin, LHAASO collaboration meeting@August 2016

Second component during prompt phase

10

(a)

GRB 090902B

GRB 090510

Abdo et al. (2009)

-10 sec after trigger

vF_v (erg/cm²/s) 10⁻⁵ 10⁻⁶ 10-7 Time-integrated photon spectrum (0.5 s - 1.0 s) 10-4 (b) 10⁻⁵ vF_v (erg/cm²/s) 10-6 0.5 s - 0.6 s: Band (B s - 0.9 s: Band 10 0.8 s - 0.9 s; Band (6 f 0.9 s - 1.0 s: PL (LAT d 10⁷ 10² 10³ 10⁵ 10⁶ 104 10 10 Energy (keV) 10 GeV

Ackermann, et al. 2010

-1 sec after trigger

Sensitivity to GRBs in the WCDA shower mode

* If the highenergy cutoff is above 30GeV, WCDA can significantly detect bright GRBs, e.g., GRB090902B , GRB090510

c.f. based on slides by Wu, H. given in Tianjin, LHAASO collaboration meeting@August 2016

GAMMA-RAY BINARIES OBSERVATIONS AT TEV ENERGIES

TAM Pak Hin (Sun Yat-sen University)

on behalf of the Galactic Science group of LHAASO: CHEN Yang, HU HB, MA XH, WANG ZX, HOU X, etc.

GAMMA-RAY BINARIES

Currently known high-mass gammaray binaries (only 7 are known)

name	binary c	omponents	P_{orb} (d)	HE	VHE	refs (\star)	notes
(high-mass) gamma-ray binaries							
PSR B1259-63	pulsar	Be	1236.7	\checkmark	\checkmark	[12, 13]	47.7 ms
HESS J0632+057	?	Be	315		\checkmark	[14, 15]	
LS I $+61^{\circ}303$?	Be	26.5	\checkmark	\checkmark	[16, 17]	magnetar ?
1FGL J1018.6-5856	?	0	16.6	\checkmark	\checkmark	[18, 19]	
LS 5039	?	0	3.9	\checkmark	\checkmark	[20, 21]	

Dubus (2015)

New comers:

LMC P3(O star, Porb 10 days) PSR J2032+4127 (Be star, Porb 50 years)

Orbital modulation

Gamma-ray binaries : Gamma-ray loud

1FGL J1018-5856

H.E.S.S. Collaboration (2015)

In general, low photon statistics at >10 TeV energies by current IACTs

Transient emission/flares in GeV/ TeV from gamma-ray binaries

Bright TeV flares from LS I 61 303

A. O'Faoláin de Bhróithe et al. (ICRC 2015)

Bright TeV flares from LS I 61 303

A. O'Faoláin de Bhróithe et al. (ICRC 2015)

PSR B1259-63/LS 2883

- comprising of a pulsar and an Oe star, at d-2.3 kpc
- orbital period: 3.4 years
- Interaction between the stellar wind/disk and the pulsar wind => non-thermal radiation close to periastron

Radio to TeV Enhancement over periastron passages

GeV flares in 2011 & 2014!

Tam et al. (2011, 2015) *also see, e.g., Caliandro et al.*(2015)

X-ray/GeV connection?

Tam et al. (2015)

PSRJ2032+4127/MT91 213

 A young, gamma-ray pulsar.
 Pulsed emission in Radio/GeV
 P = 143 ms L_{sd} = 1.7×10³⁵ erg/s
 Very long orbit binary: Po-50 years.
 (Lyne et al. 2015: Ho et al. 2016)
 Next periastron passage in late 2017.

> 8-2) 8 \bigcirc 1000 -200 (10^{-13}) 0 Y (light-sec) 2017.0 -5000 2016.0 1000 -10000-2000 5000 To E -15000Discover 50000 55000 -15000-10000-50000 Date (MJD) X (light-sec)

> > 31

pulsar's timing parameter

X-ray/GeV data

★ X-ray flux is increasing now.
 ★ about factor of ten in last -3 years
 (see also Ho et al 2016).
 What cause the increase of X-rays? Shock?

(Takata, Tam, et al. submitted)

32

Future perspective

• TeV

-- I.C. scattering

-- Absorption by the pair-creation.

--Good target for Cherenkov telescope.

•

PSRJ2032+4127

- But it sits inside a strong TeV source TeV J2032+4130
- TeV and X-ray counterparts (PWN? combinations of sources?)

Particle acceleration in gamma-ray binaries

- * Persistent emission: How high can gamma-ray binaries accelerate particles persistently?
- * Transient emission: What produces GeV/TeV flares?
- * TeV gamma-ray observations may help to answer some of these. Wide field-of-view instruments are complimentary to pointed, deep observations, e.g., by CTA, given the unpredicted nature of enhanced emission/flares.
- * Also, for long period (years or above) gamma-ray binaries, pointed observations find it hard to cover the whole orbit, not to mention orbit-to-orbit difference.

Summary

* GRBs: I have presented the prospects of GRB observations using wide-field detectors at -100 GeV, from what we know from Fermi/LAT observations

* Gamma-ray binaries: they are rare but

important particle accelerators. Whilst observations at >10 TeV are limited, there are rooms to explore with high-altitude photon detectors.