

cherenkov telescope array

FACULTÉ DES SCIENCES

Innovative design of a camera for IACT telescopes

Domenico della Volpe (DPNC, Université de Genève)

1

The context

- The Cherenkov Telescope Array will be composed of 3 different sizes of telescopes: Large (LST), Medium (MST) and Small (SST)
- Different optics and a camera designs are proposed for these telescopes
- The Geneva group is the leader of one of the proposed SST telescopes using a Davies-Cotton single mirror design and proposing an innovative fully digital camera based on SiPM
- The camera presented here is the design proposed for this Single mirror Small Size telescope (SST-1M)

Large scale ma	iss production High yield	No Ageing Low Op	Lightweight . Voltage
Higher PDE over larger spectral range			
Robust	Insensitive to Magnetic Field		
Compact	Very goo	od Single Phot	on Response
Small variation sample-by sample			

_

Why SiPM

- High Quantum Efficiency
- Single Photon sensitivity
- Fast pulses
- Low noise
- High Fill factor
- Robustness
- Uniformity
- High dynamic range
- · Large area to be covered
- Linear response

Why SiPM

Improve

- High Quantum Efficiency
- Single Photon sensitivity
- Fast pulses
- Low noise
- High Fill factor
- Robustness
- Uniformity
- High dynamic range
- Large area to be covered
- Linear response

40 mm

Why SiPM

Improve

- High Quantum Efficiency
- Single Photon sensitivity
- Fast pulses
- Low noise (dark count, afterpulses)
- High Fill factor
- Robustness
- Uniformity
- High dynamic range
- · Large area to be covered
- Linear response (optical cross talk, pile up)
- · Lower voltage and easier cooling
- Lightweight
- High potential for performance improvement and cost decrease
- Characteristics depend on operation temperature

40 mm

Improve

- Fast pulses
- · Low noise (dark count, afterpulses)

- Large area to be covered
- Linear response (optical cross talk, pile up)

Are these parameters worrisome for gamma ray astronomy ?

Characteristics depend on operation temperature

Why SiPM in gamma-ray Astronomy

- Excellent single PE sensitivity
- Lightweight and robust cameras
- No evidence of ageing after 18 months
- Night Sky Background (NSB) rate dominates wrt Dark noise (MHz)
- Current Photo-Detection Efficiency > 40%.
- Operation during Moonlight: ~30% larger duty cycle
- As demonstrated by FACT, SiPM work on the field and with moonlight!)

New approach, use fully digital SiPM-based camera on a Davies-Cotton telescope.

Innovative SiPM camera for IACT - D. della Volpe -7th Workshop on Air Sh

Telescope Design Drivers

PSF OF A 4M DAVIES-COTTON

Telescope Design Drivers

Too big for a SiPM!!

Winston cones

FACULTÍ DES SCHWERT

We need an Hollow cone to improve the response in the UV

Prototypes and first measurements

- Measurement done for different wavelengths
- Simulation of the set-up to validate the coating
- Very good agreement between simulation and measurement
- Coating qualified also with 40 thermal cycles (from -15° to +30°) - no measurable effect
- The collection efficiency shown here does not take into account the effect of the entrance window

Related paper:

J.A. Aguilar et al., Design, optimization and characterization of the light concentrators of the single mirror small size telescopes of the Cherenkov Telescope Array, Astroparticle Physics, doi:10.1016/j.astropartphys.2014.05.010

Prototypes and first measurements

The S12516-050 sensor

Innovative SiPM camera for IACT - D. della Volpe -7th Workshop on Air Shower Detection at High Altitude

The Hexagonal Sensor

- Despite the use of the light concentrators, the pixel size remains large compared to common devices,
- Result of a collaboration between DPNC University of Geneva and Hamamatsu, the sensors are large hexagonal arrays of G-APD.

mm

The Camera concept

- Separation of PDP and Digital Readout
 - Separate mechanics and power supplies
 - Analogue signals over CAT6/RJ45
 - DC coupling for NSB monitoring
- Window and chassis sealed, IP65
- Water cooled Heat pipes on Digital board
- Compact, robust, lightweight and selfcontained

The Camera concept

- Separation of PDP and Digital Readout
 - Separate mechanics and power supplies
 - Analogue signals over CAT6/RJ45
 - DC coupling for NSB monitoring
- Window and chassis sealed, IP65
- Water cooled Heat pipes on Digital board
- Compact, robust, lightweight and selfcontained

Photo Detection Plane

- 1296 pixels, 108 modules (12 pixels each)
- Power consumption ~ 500 W
- Total weight 35 kg
- Borofloat entrance window 3.3 mm coated with AR filter (Cut-off at 540 nm)
- Aluminum backplate (6 mm) as backbone and cold plate for Cooling
- Sensor bias automatically adjusted according to temperature (reso. of 0.17 deg)

Borofloat window

Assembly - Photo Detection Plane

1 day of work to assemble full PDP

4

Assembly - Photo Detection Plane

1 day of work to assemble full PDP

4

The Front-end electronics

The pre-amp boards

- read and pre-amplify the analog signals
- routes out signals, the HV and the output of the NTC probe, present on the sensor package.

SlowControl Board

- route pixel signals to Digicam via the RJ45 connector
- distributes the power and the HV
- regulate HV for each pixel
- Use a micro controller to change HV of each pixel to compensate temperature variations measured by the NTC probe in sensor package
- Board accessed via CAN-bus

The Front-end electronics

The pre-amp boards

- read and pre-amplify the analog signals
- routes out signals, the HV and the output of the NTC probe, present on the sensor package.

SlowControl Board

- route pixel signals to Digicam via the RJ45 connector
- distributes the power and the HV
- regulate HV for each pixel
- Use a micro controller to change HV of each pixel to compensate temperature variations measured by the NTC probe in sensor package
- Board accessed via CAN-bus

Slow control Board

- The slow control board has the following task
 - route pixel signals to Digicam via the RJ45 connector
 - provide the bias and
 - change the bias to compensate for temperature variations
- a micro controller supervises the temperature compensation
 - look-up table is loaded with correction
 - each pixel has its own correction
 - temperature reading
- Board accessed via CAN-bus

Commissioning - Design validation

Control:

- ✓ Enable boost for bias
- ✓ Activate bias voltage
- ✓ Reference voltage and temperature setting
- Temperature variation factor

Monitoring of:

- Temperature and bias voltage
- ✓ Compensation loop

Digital readout and trigger / DigiCam

- Sampling rate 250 MHz
- Readout rate: 32 kHz @ 80 ns readout window, no dead-time
- Fully digital trigger and readout (High-speed/High-throughput)
- Serial architecture based on multi-Gigabit links (trigger and ADC readout)
- Trigger path with reconfigurable algorithms and signal preprocessing

- Based on last generation of High performance Xilinx FPGA \Rightarrow Flexibility, High
 - Speed, Low power consumption
 - ➡ up to **56 GTX** transceivers, max 12.5Gbit/s
 - ➡ up to 96 GTH transceivers, max 13.1Gbit/s
- Using DDR expandable RAM for data buffering \Rightarrow Upgradable, handle high

- 36 high speed 8Gbit/s for crate trigger data
- 18 low speed 1Gbit/s for readout and slow control

- Based on last generation of High performance Xilinx FPGA \Rightarrow Flexibility, High
 - Speed, Low power consumption
 - ➡ up to **56 GTX** transceivers, max 12.5Gbit/s
 - ➡ up to 96 GTH transceivers, max 13.1Gbit/s
- Using DDR expandable RAM for data buffering \Rightarrow Upgradable, handle high

BackPlane with 54 differential pairs

- 36 high speed 8Gbit/s for crate trigger data
- 18 low speed 1Gbit/s for readout and slow control

- Based on last generation of High performance Xilinx FPGA \Rightarrow Flexibility, High
 - Speed, Low power consumption
 - ➡ up to **56 GTX** transceivers, max 12.5Gbit/s
 - ➡ up to 96 GTH transceivers, max 13.1Gbit/s
- Using DDR expandable RAM for data buffering \Rightarrow Upgradable, handle high

BackPlane with 54 differential pairs

- 36 high speed 8Gbit/s for crate trigger data
- 18 low speed 1Gbit/s for readout and slow control

- Based on last generation of High performance Xilinx FPGA \Rightarrow Flexibility, High
 - Speed, Low power consumption
 - ➡ up to **56 GTX** transceivers, max 12.5Gbit/s
 - ➡ up to 96 GTH transceivers, max 13.1Gbit/s
- Using DDR expandable RAM for data buffering \Rightarrow Upgradable, handle high

• 18 - low speed 1Gbit/s for readout and slow control

Assembly - Water Cooling system

- Cooling pipes installed prior to any electrical system
- Water tightness checked
- Epoxy resin applied on joints for safety

Assembly - Water Cooling evetors fast connectors for inlet/outlet camera

- Cooling pipes installed prior to any electrical system
- Water tightness checked
- Epoxy resin applied on joints for safety

Assembly - Water Cooling system fast connectors for inlet/outlet camera

Sector manifold

Camera manifold

Water tightness checked
Epoxy resin applied on joints for safety

Innovative SiPM camera for IACT - D. della Volpe -7th Workshop on Air Shower Detection at High Altitude

hiller

Digicam Cooling

2 Heat pipes (25W each) per board coupled to a water cooled plate

 Board can be removed from the crate with limited intervention on the cooling system

Micro-crate mounted at 45° to have always optimal heat-pipes efficiency

Digicam Cooling

2 Heat pipes (25W each) per board coupled to a water cooled plate

 Board can be removed from the crate with limited intervention on the cooling system

Micro-crate mounted at 45° to have always optimal heat-pipes efficiency

Innovative SiPM camera for IACT - D. della Volpe -7th Workshop on Air Shower Detection at High Altitude

Camera Chassis IP65 Test

- Camera tested against IP65 Specs
 - to check even tiny leaks the internal surface of the camera was covered with a special paper which change color in case it comes in contact to water
- No water leak but on 2 points on the patch panel
 - Due to a wrong machining of the holes
 - · cured with a small joint
- Another test is scheduled next week to qualify the new solution

Camera Chassis IP65 Test

- Camera tested against IP65 Specs
 - to check even tiny leaks the internal surface of the camera was covered with a special paper which change color in case it comes in contact to water
- No water leak but on 2 points on the patch panel
 - Due to a wrong machining of the holes
 - · cured with a small joint
- Another test is scheduled next week to qualify the new solution

Camera Chassis IPX5 Test

- Camera tested against IP65 Specs
 - to check even tiny leaks the internal surface of the camera was covered with a special paper which change color in case it comes in contact to water
- No water leak but on 2 points on the patch panel
 - Due to a wrong machining of the holes
 - · cured with a small joint
- Another test is scheduled next week to qualify the new solution

Camera Safety - Housekeeping Board

- to have as many possible probes but not having lots of cables from camera to the PLC we designed an Housekeeping board
- It can host 3 different type of sensors
 - Temp sensors
 - Humidity sensors
 - Temp+hum integrated sensor

- It can be connected to the PLC with 2 different protocols:
 - RS485 or CanBus
- it can trigger alarm to PLC in case of problems
- it will also monitor the power supply

Charge resolution measurement:

- Key parameter to assess quality of image reconstruction (Hillas parameters)
- Measurement performed injecting both pulsed and continuous light
- Different NSB level from dark night to half-moon (45° off-axis)

Linear

25

26

Innovative on in carnera for inter

charge resolution

FACULTÉ DES SCIENC

charge resolution

First operations of the camera

First operations of the camera

- A camera test set-up has been realised.
- 1 sector (1/3 of the camera) + the centre of the camera can be tested at the same time
- For each pixel, 2 LEDs are present: one flashing (AC) to emulate Cherenkov flashes and one DC to emulate NSB.
- Cherenkov shower-like shapes can be produced to verify and validate trigger algs and efficiency
- The set-up is very flexible and allow to check the cabling/ mapping, the working pixels, the flat fielding, charge resolution for each individual pixel, calibrations, trigger algs

Pixels scan to check mapping and working pixels

First operations of the camera

- A camera test set-up has been realised.
- 1 sector (1/3 of the camera) + the centre of the camera can be tested at the same time
- For each pixel, 2 LEDs are present: one flashing (AC) to emulate Cherenkov flashes and one DC to emulate NSB.
- Cherenkov shower-like shapes can be produced to verify and validate trigger algs and efficiency
- The set-up is very flexible and allow to check the cabling/ mapping, the working pixels, the flat fielding, charge resolution for each individual pixel, calibrations, trigger algs

Pixels scan to check mapping and working pixels

Conclusions

- SiPM use is spreading in many fields given their advantages.
- SiPM are particularly fit for gamma-ray astronomy,
 - Operation during Moonlight ~ 30% larger duty cycle
 - No evidence of ageing
 - Lightweight and robust cameras
 - Excellent single PE sensitivity
 - High Photo-Detection Efficiency at ~ 40%
- SST-1M camera goes in this direction but tried to open a new road towards large area devices.
 - Custom designed hexagonal device in collaboration with Hamamatsu
 - Large Area devices are complicated to handle but can be done!
- Many Lessons learned
 - SiPM parameter spread verified and validated
 - · Large capacitance can be mastered
- The camera is under test . Very soon result on the field with real data.... stay tuned
- The solution worked out for CTA can be exploit without major modification both in larger CTA telescope and LHAASO WFCTA.
- Now under evaluation last generation of FBK sensor to see if they can work in our approach at room temperature.

Looking for seeing real shower!!!

Looking for seeing real shower!!!