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Gamma-ray astronomy: present and future facilities 

Gamma-ray astronomy and the origin of cosmic rays 

Where are CR PeVatrons? 

Diffuse emission in the (multi-)TeV energy domain 

The link with neutrino astronomy

Outline of the talk

Bottom line question: why are instruments like MILAGRO & sons so cool?
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Figure 7.8: Point source sensitivities for the simulated HiSCORE detector (”HS”) for
conservative and optimistic assumptions (see Hampf et al. 2013, for discussion and
details). The expected sensitivity for a 100 km2 HiSCORE array is also shown (”HS
100 km2 opt.). For comparison, published sensitivities of selected other gamma–ray
observatories are shown: CTA (Actis et al. 2011), H.E.S.S (Bernlöhr et al. 2013),
Milagro and HAWC (Abeysekara et al. 2013). The observation time is assumed to
be 50 hours for pointed instruments (H.E.S.S. and CTA) and five years of continuous
operation for all other instruments. (taken from Hampf et al. 2013)

and observing di↵erent parts of the sky, they will be valuable assets in the search
for PeVatrons.

The HiSCORE instrument relies on indirect air–shower observations of cosmic
rays from 100 TeV to 1 EeV and gamma–rays from 10 TeV to several PeV (see e.g. for
a more detailed description of the instrument Tluczykont et al. 2013). This detector
is at this time in development, but is expected to reach an integral sensitivity above
100 TeV of the order of ⇡ 5 ⇥ 10�16 cm�2 s�1. Let us consider that we investigate
the population of SNRs detected by CTA above 1 TeV as described in Section 7.1,
in order to find PeVatrons. The improvement in the sensitivity above 100 TeV
compared to one of CTA leads to an average mean number of detection of PeVatron
above 100 TeV of about ⇡ 0.19 in the most optimistic model M6. Although this
value is a factor of 2 larger than the one found for the typical characteristic of CTA,
it is still very small. The improvement in the sensitivity in the multi–TeV range
does not help very much for the identification of PeVatrons. It is however important
to remark that as suggested in Figure 7.6, the number of PeVatrons present in the
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Diffusive Shock Acceleration
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γ-rays from pp interactions

Drury, Aharonian & Völk 1994
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SuperNova Remnants,Cosmic Rays,γ-rays

very popular but not 
proven yet!

see Gabici & Montmerle 2015 for a recent review



We need proton PeVatrons

Fig. 13. Different extrapolations of the lg Ne-distribution for 0.5 PeV proton induced
showers (QGSJet 01).

Second, the form of the tails of the shower size distributions is not known.
Fig. 13 shows an example of the lg Ne–distribution for showers induced by
0.5 PeV protons. Besides the parameterization used, two different extrap-
olations are displayed, the first one with sharp cutoffs at the edges of the
distribution, the second one with an exponential decrease up to higher and
lower values of lg Ne. Within the statistics of the simulations each of these
functions describes the distribution equally well. The influence of these tails
on the shower size spectra and the unfolding result may be quite important
because of the steeply falling primary energy spectra. The displayed parame-
terizations in Fig. 13 can be regarded as extreme assumptions and it has been

Fig. 14. Unfolded energy spectra for H, He, C (left panel) and Si, Fe (right panel)
based on QGSJet simulations. The shaded bands are an estimate of the systematic
uncertainties due to the used parametrizations and the applied unfolding method
(Gold algorithm).
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FIG. 3. H&He spectrum by the hybrid experiment with ARGO-
YBJ and the imaging Cherenkov telescope. A clear knee structure is
observed. The dashed line represents the fit to the data. The single-
index spectrum below 700 TeV and its extrapolation up to 3160 TeV
(solid line) has been used as an a priori assumption. The H&He
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Indirect detection of PeVatrons?

vs

CRs escape the SNR

�

�

MCs enhance the 
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this is you

taccPeV ⇡ 30 yr

SG & Aharonian 2007
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Where is the source?

CR spatial distribution many sources 
-> any distribution

Sgr A*
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The source is at the GC

226 h 1/R profile -> source located in the inner ~10 pc!

multi-source scenarios require excessive fine-tuning/unrealistic number of sources

H.E.S.S. Coll. 2016
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Supermassive black hole as a PeVatron

Sgr A* is the best bet candidate source of PeV cosmic rays

diffuse

Sgr A*

~10 TeV cutoff -> inconsistency? no…

emission could be unrelated 
time dependent effect 
γγ-absorption w. IR photons? (Celli+ 2016)

Wp ⇠ 1049erg

gas mass

Q̇p ⇠ 4⇥ 1037
⇣

D
1030cm2/s

⌘
erg/s

1/R profile
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CR bursts from GC 
Ptuskin & Khazan (1981) 
see also Fujita+ 2016 

CR in Gal. breeze 
Taylor & Giacinti 2016

IceCube neutrinos

Taylor, SG, Aharonian 2014
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Superbubbles
 chemical composition -> CRs originate in a source which is a mixture ~20% stellar 
outflow/SN ejecta and ~80% interstellar medium (Murphy+ 2016 and references) 
 stars form in clusters -> SN explosions -> SNOBs and superbubbles  
the acceleration mechanism might be completely different (Bykov&Fleishman92) 
 particle spectrum not universal, large Emax (large size!)

superbubbles in γ-rays

of N 157B of 100′′ (19) is of the order of the H.E.S.S.
angular resolution. Further significant g-ray emis-
sion is detected to the southwest of N 157B.
A likelihood fit of a model of two g-ray sources

to the on-source and background sky maps es-
tablishes the detection of a second source at an
angular distance of 9′ (corresponding to 130 pc at
a distance of 50 kpc) from N 157B. The model
consisting of two sources is preferred by 8.8 SD
over the model of one single source. Figure 1C
shows an x-ray image with overlaid contours of
confidence of the source position. The position of
the second source [right ascension = 5h35m(55 T 5)s,
declination = −69°11′(10 T 20)′′, equinox J2000,
1 SD errors] coincides with the superbubble

30 Dor C, the first such source detected in VHE g
rays, and thus represents an additional source class
in this energy regime. A g-ray signal around the
energetic pulsar PSR J0540-6919 is not detected,
despite the presence of an x-ray luminous PWN
(20). A flux upper limit (99% confidence level) is
derived at Fg (>1 TeV) < 4.8 × 10−14 ph cm−2 s−1.
Along with the clear detection of N 157B and

30 Dor C, evidence for VHE g-ray emission is
observed from the prominent SNR N 132D (Fig.
1D). The emission peaks at a significance of about
5 SD above a background that is estimated from a
ring around each sky bin. At the nominal position
of the SNR, 43 g rays with a statistical signifi-
cance of 4.7 SD are recorded.

The g-ray spectra of all three objects are well
described by a power law in energy, F(E) = d3N/
(dE dt dA) =F0 (E/1 TeV)

−G (where E is energy, t
is time, and A is detector area) (Fig. 2). The best-
fit spectral indices and integral g-ray luminosi-
ties are summarized in Table 1.
Even with a deep exposure of 210 hours, sig-

nificant emission from SN 1987A is not detected,
and we derive an upper limit on the integral g-ray
flux of Fg(>1TeV) < 5.6 × 10−14 ph cm−2 s−1 at a
99% confidence level.

Discussion of individual sources

The three VHE emitters belong to different source
classes, and their energy output exceeds or at least

SCIENCE sciencemag.org 23 JANUARY 2015 • VOL 347 ISSUE 6220 407

Fig. 1. Sky maps of the LMC. (A) Optical image of the entire LMC (55). The
boxes denote the regions of interest discussed in this paper. Colors denote
levels of 3, 5, 10, and 20 SD statistical significance of the g-ray signal. (B) VHE
g-ray emission in the region around N 157B.The green lines represent contours
of 5, 10, and 15 SD statistical significance of the g-ray signal. (C) X-Ray Multi-
Mirror Mission (XMM-Newton) x-ray flux image of the region of 30 Dor C.The
superimposed cyan lines represent contours of 68, 95, and 99% confidence

level of the position of the g-ray source. Diamonds denote the positions of the
star clusters of the LH 90 association. See the supplementary materials for
details on the x-ray analysis. (D) VHE g-ray emission in the region around N
132D. The green lines represent contours of 3, 4, and 5 SD statistical sig-
nificance.The background of the g-ray emission [in (B) and (D)] was obtained
using the ring background method (56). The resulting excess sky map is
smoothed to the angular resolution of the instrument.
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The neutrino-gamma ray connection
Secondary electrons and positrons:

p+ p ! p+ p+ ⇡0 + ⇡+ + ⇡�

⇡0 ! � + �

⇡± ! µ± + ⌫µ(⌫̄µ)

µ± ! e± + ⌫̄µ(⌫µ) + ⌫e(⌫̄e){
Final products of proton-proton interactions are not only gamma ray photons but 

also neutrinos, anti-neutrinos, electrons and positrons

Ee ⇡ E⌫ ⇡ Ep

20



Neutrino sources: fluxes

F⌫(> 1 TeV) ⇡ 10�11cm�2s�1very roughly, what we need is 1 Crab ->
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exercise: convert a minimal detectable flux (1 nu/km2/yr) into a gamma-ray one

Ecut = 101.5 TeV

Ecut = 1 TeV

Ecut = 103 TeV

↵ = 1.8, 2.2

above 1 TeV

F�(20 TeV) = 2� 6⇥ 10�15 ph/cm2/s

best performances of 
atmospheric Cherenkov 

telescopes @1TeV 
MILAGRO -> 20 TeV 

gamma ray observations at ~20 TeV are the most relevant for neutrinos
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ideal gamma-ray observations @20 TeV -> MILAGRO

let’s assume that this excess is 
representative for the whole 

inner Galaxy
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Diffuse emission from the Galaxy
Gabici et al. 2008
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Diffuse emission from the Galaxy
Gabici et al. 2008

E�2.7

E�2

in the plot below 1 yr = 1.5 yr

most optimistic case: 15 neutrinos above 10 TeV (versus 28 background counts)

10 neutrinos above 20 TeV (versus 10 background counts)

very similar fluxes obtained more recently (Neronov&Semikoz, DRAGON team…)



Gamma-ray astronomy: present and future facilities 

Gamma-ray astronomy and the origin of cosmic rays 

Where are CR PeVatrons? 

Diffuse emission in the (multi-)TeV energy domain 

The link with neutrino astronomy

Outline of the talk

Bottom line question: why are instruments like MILAGRO & sons so cool?

Conclusions

✘


