

Results from the Fermi Large Area Telescope

Simone Maldera, INFN-Torino

On behalf of the Fermi-LAT Collaboration

The Fermi satellite

- The Fermi Gamma-Ray Space Telescope is an international Science Mission exploring the gamma-ray sky by means of its two main instruments:
 - Gamma-ray Burst Monitor (GBM): 8 keV 40 MeV
 - Large Area Telescope (LAT): 20 MeV ~1TeV

The Fermi LAT

Precision Si-strip Tracker (TKR)

- Measures incident γ -ray direction
- 18 XY tracking planes: 228 µm strip pitch
- High efficiency. Good position resolution
- $12x 0.03 X_0$ front end: reduce multiple scattering
- 4x 0.18X₀ back-end: increase sensitivity >1 GeV

Overall LAT Design:

Gamma-ray Space Telescope

- 4x4 array of identical towers
- 3000 kg, 650 W (allocation)
- 1.8 m imes 1.8 m imes 1.0 m
- 20% sky in any instant
- All sky for 30' every 3 hours

<u>Hodoscopic CsI Calorimeter</u>

- Segmented array of 1536 CsI(Tl) crystals
- 8.6 X₀: shower max contained up to:
 - ~ 200 GeV normal (1.5X₀ from TKR included)
 - ~ 1TeV @ 40° (CAL-only)
- Measures the incident γ-ray energy
- Rejects cosmic-ray background

Anticoincidence Detector (ACD)

• 89 scintillator tiles

e

e

- First step in the reduction of large charged cosmic ray background
- Segmentation reduces self-veto at high energy

Operating context

NASA senior review 2016: confirm operations through 2018 and recommend through 2020

https://science.nasa.gov/astrophysics/2016-senior-review-operating-missions

ermi

LAT performances

Larger energy range, higher acceptance, better resolution

Gamma-ray

Pass 8 performance and data publicly released June 2015

Science themes

Multi-Messenger and Multi-Wavelength Astrophysics Time Domain Astronomy • Searches for Dark Matter • Particle Astrophysics

ermi

Gamma-ray Space Telescope

Messengers gammas, electrons

Time

ms transients to multi-year periodicities

Dark Matter WIMP and axion candidates

Particle Astrophysics CR acceleration sites and mechanisms

The gamma-ray sky above 1 GeV

Gamma-ray Space Telescope

The gamma ray source catalogs

Catalogs:

Classification of sources, population studies, possibility of finding new classes of sources

FERMI -LAT general catalogs:

*n*FGL Catalogs detect 3FHL and characterize sources 7 years (P8), 1720 sources in the ~0.1-100 GeV 2FHL energy range 6.7 years (P8), 360 sources 1FHL 3 years, 514 sources 3FGL *n*FHL Catalogs explore 4 years, 3033 sources the higher-energy sky 10³ **10**⁻¹ 10² 10

GeV

class-specific catalogs:

- AGNs, Pulsars, GRBs, SNRs, transients...

Fermi LAT 3rd Source Catalog (3FGL)

Space Telescope AGN Unassoc. Other Galactic SNR/PWN **PSR** External galaxy No association Possible association with SNR or PWN × AGN Pulsar PWN Globular cluster Starburst Galaxy 6% Binary + Galaxy SNR Nova Star-forming region

- 4-years data sample with P7 reprocessed data
- 3033 sources detected with >4 σ significance
 - Mostly blazars and pulsars

Gamma-ray

- Roughly 1/3 of the sources are unassociated
- See Astrophys. J. Suppl. 218 (2015), 23 (arXiv 1501.02003)

58%

33%

Sermi LAT Hard Sources Catalogs (2FHL-3FHL)

Gamma-ray Space Telescope

2FHL: E>50 GeV 360 sources in 80 months

75% blazars,11% Galactic sources,14% unassociated

PRELIMINARY

10

3FHL: E> 10GeV 1720 sources in 84 months

74% extragalactic, 7% Galactic sources, 19% unassociated

LAT Hard Sources Catalogs (2FHL-3FHL)

Space Telescope

EBL and gamma ray horizon

Intrinsic spectrum is attenuated due to interaction with EBL (photo pair production)

[TeV]

$$\frac{\mathrm{d}N_{\mathrm{obs}}}{\mathrm{d}E} = \frac{\mathrm{d}N_{\mathrm{int}}}{\mathrm{d}E} \times e^{-\tau_{\gamma}(E,z)}$$

Cosmic gamma ray horizon

Highest energy photon vs source redshift (for associated sources in 2FHL with known redshift)

Gamma-ray Space Telescope

Different estimates of the cosmic γ -ray horizon are also shown (derived from the EBL models)

Cosmic Gamma Ray Horizon: energy at which $\tau = 1$ as a function of redshift. 2016, ApJS, 222, 5 ArXiv: 1508.04449

EBL and gamma rays horizon

Effect of the EBL on blazar gamma rays spectra

look for the collective deviation of the spectra of blazars from their intrinsic ones in three different redshift bins

Inferred optical depth

Hadronic emission from SNRs

Evidence for hadronic acceleration in some bright nearby SNR

IC444 and W44 SNR:

Space Telescope

2013, Science, 339, 807 ArXiv: 1302.3307

Gamma emission from pion decay - accelerated protons

DM searches in the GeV gamma-ray sky

• Indirect detection (i.e. astrophysical) searches for DM in the astrophysical targets where it is known to exist

DM search targets

Satellites

Space Telescope

Low background and good source id, but low statistics

Good Statistics, but source

Galactic Center

confusion/diffuse background

Milky Way Halo

Large statistics, but diffuse background

> **Dwarf Galaxies** Known location and DM content Low statistics

Spectral Lines

Little or no astrophysical uncertainties, good source id, but low sensitivity because of expected small branching ratio

Galaxy Clusters

Low background, but low statistics

Isotropic contributions

Large statistics, but astrophysics, galactic diffuse background

16

Dark matter in the Inner Galaxy?

- Likely the brightest dark matter source in the gamma-ray sky, but it is embedded in large and complicated backgrounds:
 - resolved sources

Gamma-ray Space Telescope

- unresolved sources
- diffuse emission
- Several independent studies find GeV excesses above the expected diffuse background
 - The excess and its spatial extension are robust
 - The spectrum of the excess depends strongly on the emission model
- The excess at the Galactic Center could be due to:
 - dark matter
 - unresolved sources (e.g. MSPs)
- DM best fit cross section is in mild tension with other limits
- See Astrophys. J. 819 (2016), 1

- dSph Galaxies are the cleanest target for DM searches:
 - **DM-dominated** (1000:1)
 - 10s to 1000s of stars
 - Mostly old stars
 - Few gamma-ray emitters (pulsars, SNRs)
 - Little gas content
 - often high latitude: low diffuse background
 - nearby (<250 kpc)</p>
 - Many! allows for joint analyses

95% CL upper limit on DM annihilation cross section from combined analysis of 15 dSphs

optical surveys are significantly increasing number of dwarfs

non observation of gammarays from dSphs in the next 4 years can exclude WIMPs below ~400GeV (thermal relic cross-section into bbar) and DM GC excess

Phys. Rev. Lett. 115, 231301 (arXiv 1503.02641)

Constrains on ALPs

The Galaxy NGC 1275: CAST 10⁻¹⁰ Globular clusters At 72 Mpc from Earth SN γ burst **Bright gamma-ray emitter** 10⁻¹¹ Fermi LAI Located in the center of the $g_{a\gamma}$ (GeV⁻ **Perseus Cluster** strong magnetic field (tens 10⁻¹³ Searched for irregularities in gamma rays spectrum from CTA opacity TeV transparency 10⁻⁹ 10-8 10-7 10⁻¹⁰ 10-6 10⁻⁵ m_a (eV) couplings > 5 × 10^{-12} GeV⁻¹ for 2016, PRL arxiv:1603.06978 ALP masses $0.5 < -m_a < -5$

No evidence of ALPs

Gamma-ray Space Telescope

of µG)

NGC1275

neV

 10^{-4}

ALPS II

IAXO

The LAT as a CRE observatory

Dedicated event selection to identify electrons (and positrons)

Gamma-ray

new measurement of the CRE spectrum with Pass8, achieving the first direct measurement above 1 TeV

Search for anisotropies in CRE arrival directions: no anisotropy observed in the first year of operation: -> upper limits new analysis with current CRE selected data set (7 years) at an advanced stage

Fermi is an excellent instrument for searches of EM counterparts of GW events:

- Large FOV \rightarrow entire sky coverage in 3 hours
- localization ~ 0.1-1 °
- sensitive to transients from ms to years timescales
- GBM sensitive to impulsive flares

Routine searches under MoU with Ligo Virgo Consortium

No excess found for the 3 GW events analyzed so far

The LAT is an astroparticle observatory with unprecedented capabilities that has been exploring the gamma-ray sky since 2008

- The LAT has been monitoring the gamma-ray sky for 8 years and is still in good health
- Significant improvements of the LAT performance thanks to the newest Pass 8 event reconstruction and classification
- ~1G photons, thousands sources, public database

Fermi data probe fundamental questions

- CR origin, particle acceleration and propagation
- Dark Matter Identification

nace Telescope

dSphs are a promising target

- EM counterparts to Gravitational Waves

Science with the Fermi LAT

Onboard trigger and filtering

Gamma-ray Space Telescope

- Five hardware trigger primitives
- Upon L1 trigger the entire detector is read out
- Need onboard filtering to fit the data volume within the allocated bandwidth

The line feature at 133 GeV

- A potential signal was reported in the 3.7yrs data sample for a small ROI containing the GC
 - Bringmann+, JCAP 07 (2012), 054
 - Weniger+, JCAP 08 (2012), 007
- The LAT detected the feature, although with low global significance
- Newest LAT data analysis:
 - Increased data set (5.8 yrs)
 - Use of Pass 8 event classification
 - Improved energy reconstruction
 - Greater exposure towards the GC
 - Modified observing strategy from Dec 2013 to Dec 2014
- The excess in the 3.7 yrs data is of 2σ (3.3σ with Pass 7 data) and decreases using the full 5.8 yrs data set

Modeling the GC emission

- Generalized NFW (gNFW), gamma = 1.25 $\rho(r) \propto \frac{1}{\left(\frac{r}{r_s}\right)^{\gamma} \left(1 + \frac{r}{r_s}\right)^{3-\gamma}}$
 - All sky-fit

- Fit normalization in each energy bin for each template

Space Telescope BM Observations of GW150914

GBM detectors at 150914 09:50:45.797 +1.024s

weak transient in offline seeded searches around $t_{\mbox{\tiny GW}}$

excess is 0.4s long, ~1s after t_{GW}

false probability is 0.0022

cannot be attributed to known astrophysical, solar, terrestrial or magnetospheric activity (arxiv 1602.03920)