Cosmic Rays....from PeV to EeV: investigating the knee(s) KASCADE-Grande....

....in the view of the post-LHC hadronic interaction models

1

High-energy cosmic ray spectrum

Galactic cosmic rays

Propagation through galaxy (B≈3µG?)

Acceleration of cosmic rays in supernova remnants

Direct or indirect measurement

Questions to the knee-to-ankle energy range

Overlap direct-indirect measurements? Hadronic interaction models? **Rigidity dependent knee?** Sharpness of knee? **Composition at knee? Fine-structures in spectrum?** Iron knee? End of Galactic Spectrum? Second knee? **Transition galactic – xgalactic? Anisotropy?**

Engel, Blümer, Hörandel: Progress in Particle and Nuclear Physics 63 (2009) 293

experiments in the knee energy range

• (Tibet, ARGO) LHAASO

CR around knee with multi-detector installation China - with participation of France, Italy

• TAIGA/ Tunka/HiSCORE/Tunka-Taiga-Rex

CR around knee and up to ankle with multi-detector installation Russia - with participation of Germany, more?

IceCube/IceTop – (Gen2)

Ice-Cherenkov array on top of IceCube USA – with important European contribution Advanced plans for Gen2-surface (veto) array

• GRAPES

KASCADE-like operating array at 2300m altitude India - with participation from Japan

• KCDC

KASCADE Cosmic ray Data Centre for public use Extension to other experiments foreseen (Auger?)

7th Workshop on Air Shower Detection at High Altitude, Torino, November 2016

• HAWC?!

Tundellink

Tunka / Tunka-Rex / HiScore

leeGube / leeTop (-Gen2)

1.10

https://kcdc.ikp.kit.edu

KASCADE

KArlsruhe Shower Core and Array DEtector

- Energy range 100TeV 80PeV
- Since 1995

Large number of observables: electrons, muons@4 thresholds, hadrons

T.Antoni et al. NIM A513 (2003) 490

7th Workshop on Air Shower Detection at High Altitude, Torino, November 2016

Andreas Haungs

KASCADE : energy spectra of single mass groups

Searched: E and A of the Cosmic Ray Particles Given: N_e and N_μ for each single event → solve the inverse problem

$$\frac{dJ}{d\lg N_e \, d\lg N_{\mu}^{tr}} = \sum_{A} \int_{-\infty}^{+\infty} \frac{dJ_A}{d\lg E} \left[p_A(\lg N_e, \lg N_{\mu}^{tr} \mid \lg E) \, d\lg E \right]$$

- kernel function obtained by Monte Carlo simulations (CORSIKA)
- contains: shower fluctuations, efficiencies, reconstruction resolution

KASCADE collaboration, Astroparticle Physics 24 (2005) 1-25

KASCADE: the rigidity knee

- same unfolding but based on different hadronic interaction models embedded in CORSIKA

- all-particle spectrum similar
- general structure similar: knee by light component
- -relative abundances very different for different high-energy hadronic interaction models but for many models: proton not the most dominant component!

KASCADE collaboration, Astrop.Phys. 24 (2005) 1 , Astrop.Phys. 31 (2009) 86

KASCADE : sensitivity to hadronic interaction models

 correlation of observables:
 <u>no hadronic interaction model describes data consistently !</u>
 → tests and tuning of hadronic interaction models !
 → close co-operation with theoreticians (CORSIKA including interaction models)
 → e.g.: •EPOS 1.6 is not compatible with KASCADE measurements •QGSJET 01and SIBYLL 2.1still most compatible models

KASCADE collaboration, J Phys G (3 papers: 25(1999)2161; 34(2007)2581; (2009)035201)

Result KASCADE -> Motivation KASCADE-Grande

Result KASCADE -> Motivation KASCADE-Grande

LOPES

- LOPES collaboration: -) KASCADE-Grande -) U Nijmegen, NL
- -) MPIfR Bonn, D
- -) Astron, NL
- -) IPE, FZK, D

→ Development of a new detection technique!

LOPES: Proof of principle

2. Radio data analysis

1. KASCADE measurement

3. Skymapping

4. Many events meanwhile >500 events

LOPES collaboration, Nature 425 (2005) 313

Composition measurements by LOPES

Xmax / Composition by Radio

A lot of (promising) progress in Xmax determination by radio Experiments

- published already by
 LOPES

 PhysRevD 90(2014)062001

 Tunka-Rex

 JCAP 01(2016)052

 LOFAR

 Nature 531(2016)70
 - Auger/AERA promising
 - Higher energy
- More accurate EAS
- Calibration
- Various methods

→ Interpretation debatable: "Unless, contrary to current expectations, the extragalactic component of cosmic rays contributes substantially to the total flux below 10^{17.5} eV, our measurements indicate the existence of an additional galactic component to account for the light composition we measured....." (LOFAR@Nature)

KASCADE-Grande

- Energy range: 100TeV 1EeV
- Area: 0.5 km²
- Grande: 37×10 m² plastic scintillation detectors
- Nch + total muon number

W.D.Apel et al, Nucl.Instr. and Meth. A620 (2010) 202

2-dimensional shower size spectrum

determination of primary energy
 separation in "electron-rich" and "electron-poor" event

$$log_{10}(E) = [a_p + (a_{Fe} - a_p) \cdot k] \cdot log_{10}(N_{ch}) + b_p + (b_{Fe} - b_p) \cdot k$$

 $k = (\log_{10}(N_{ch}/N_{\mu}) - \log_{10}(N_{ch}/N_{\mu})_{p}) / (\log_{10}(N_{ch}/N_{\mu})_{Fe} - \log_{10}(N_{ch}/N_{\mu})_{p})$

KASCADE-Grande energy spectra of mass groups

• steepening due to heavy primaries (3.5σ)

hardening at 10^{17.08} eV
(5.8σ) in light spectrum

• slope change from $\gamma = -3.25$ to $\gamma = -2.79!$

Phys.Rev.Lett. 107 (2011) 171104 Phys.Rev.D (R) 87 (2013) 081101

KASCADE-Grande: model dependence

Structures of all-particle, heavy and light spectra similar

→ knee by light component and heavy component; ankle by light component

- relative abundances different for different high-energy hadronic interaction models

Advances in Space Research 53 (2014) 1456

30 March 2009 – official closure ceremony

Light and Heavy Knees, Ankles, and Transition

- → KASCADE: knee of light primaries at ~3.10¹⁵eV
- → Hardening at 10¹⁶eV due to knee of medium component
- knee positions of L → KASCADE-Grande: knee of heavy primaries at ~9.10¹⁶ eV
- heavy knee less distinct compared to light knee \rightarrow
- \rightarrow mixed composition for 10¹⁵ to ~ 8.10¹⁷ eV
- light ankle at 1-2-10¹⁷ eV >

Tunka-133

32

ІсеТор

- Structures of all-particle spectra similar (in the level of 15%)

Tunka-133 Composition

- The heavy component (N+Fe) has a break at 10¹⁷ eV, reaching a fraction value of 80%
- The light component starts to rise again above 10¹⁷ eV
- Up to now we cannot confirm the sharp decrease of <In A> seen by KASCADE and the high <In A> at 10¹⁷ eV

S.Epimahkov Tunka-133 (2015)

IceTop+IceCube: Composition

- Energy dependence of <In(A)> from the coincident analysis and its systematic effects
- The combined IceTop-IceCube analysis shows a clear trend toward heavy primaries in average <ln(A)>
- The heavy knee is at higher energies and above the models

Gaisser, Nucl. Phys. B Proc. Supp. (2016) 1-9

HEAT (2015) Auger Collaboration, ICRC2015, arXiv:1509.03732

QGSJetII-04 (Mean of ln A) **Syst**. Auger @ ICRC 2015 50% p - $\langle \ln A \rangle$ 50% Fe mixed compos. 85% p -15% He 19.5 17.0 17.5 18.0 18.5 19.0 20.0 $\log_{10}(\mathbf{E}/\mathbf{eV})$

> Auger; arXiv:1509.03732, subm. to PRD Correlations of Xmax and shower-size ⇒ mixed composition at ankle, i.e. no pure p-beam

 \Rightarrow dip-model (e+e- pair prod. in CMB) ruled out

Kampert, 2016 Auger Collaboration

KASCADE-Grande: Next

• KASCADE + KASCADE-Grande finally closed end 2012 now fully dismantled

- combined analysis for coherent spectrum and composition 10¹⁴-10¹⁸ eV
- detailed data analysis (20y high-quality data) testing hadronic interaction models anisotropy studies radio (LOPES and CROME)

 KCDC KASCADE Cosmic ray Data Centre

LASCAD

smic ray Data

Andreas Haungs

https://kcdc.ikp.kit.edu/

 KCDC = publishing research data from the KASCADE experiment

• Motivation and Idea of Open Data: general public has to be able to access and use the data the data has to be preserved for future generations

• Web portal:

providing a modern software solution for publishing KASCADE data for a general audience In a second step: release the software as Open Source for free use by other experiments

Data access:

1.6-10⁸ EAS events of first data release is now available

<page-header><image><image><image><section-header><section-header><image><section-header><image><section-header><section-header><section-header><section-header><section-header><section-header>

Paper in preparation

KASCADE-Grande: Mission Accomplished !!

https://kcdc.ikp.kit.edu

KASCADE-Grande: Mission Accomplished !!

open access to research data https://kcdc.ikp.kit.edu

Ratio of diffuse Gamma-ray Flux to cosmic ray flux

7th Workshop on Air Shower Detection at High Altitude, Torino, November 2016

Andreas Haungs

Analysis by Donghwa Kang

43

Limits on diffuse Gamma-ray Flux

Iimits on diffuse Gamma-ray flux constrain the origin of IceCube-neutrinos
 Reject the model of IceCube excess coming from <20kpc in the galaxy

KASCADE-Grande: Combined Analysis

for KASCADE: additional stations at larger distances

for Grande: additional 252 stations

Analysis by Sven Schoo

7th Workshop on Air Shower Detection at High Altitude, Torino, November 2016

higher energies

➔ higher accuracy

Andreas Haungs

KASCADE-Grande: Combined Analysis resulting energy spectra

Spectra not corrected for uncertainties

KASCADE-Grande: Combined Analysis resulting energy spectra

Spectra not corrected for uncertainties

KASCADE-Grande: Combined Analysis resulting energy spectra

7th Workshop on Air Shower Detection at High Altitude, Torino, November 2016

Andreas Haungs

KASCADE-Grande: Combined Analysis resulting energy spectra based on two hadronic interaction models

 Post LHC models light primary interactions okay? heavy primary interactions show differences

KASCADE-Grande: combined analysis Check Hadronic Interaction Models

assume a composition model: H4a by Tom Gaisser

two selections: core located in KASCADE, core located in Grande we measure "different" muons

 One model, but two selections: Simulations okay, but for the data strong differences

→ Muon component not sufficiently described

7th Workshop on Air Shower Detection at High Altitude, Torino, November 2016

QGSJet-II.04

 One model, but two selections: Simulations okay, but for the data strong differences

→ Muon component not sufficiently described

7th Workshop on Air Shower Detection at High Altitude, Torino, November 2016

EPOS-LHC

One model, but two selections: Simulations okay, but for the data strong differences

→ Muon component not sufficiently described

SIBYLL 2.3

Crosscheck using "Constant Intensity"

55

Number of muons relatively constant for simulations Number of muons corresponding to same intensity drops for measured data towards higher energies Can be used to mitigate effect, however, more accurate MC needed

Sven Schoo

56

KASCADE-Grande: Muon Attenuation Length

attenuation length measured is different from the predictions of Monte Carlo
 → observed evolution of the muon content of EAS in the atmosphere is not described by the hadronic interaction models

➔ influences absolute energy and mass scale, but not spectral features

KASCADE-Grande, ICRC 2013 #0772, paper in preparation

Juan Carlos Arteaga

KASCADE-Grande: Muon Attenuation Length total muon number : $N_{\mu} = N_{\mu,0} \exp[-X_0 \sec(\theta) / \Lambda_{\mu}]$

Post-LHC models are presently under investigation EPOS-LHC looks a bit more promising

Juan Carlos Arteaga

Conclusion combined analysis:

All particle, light and heavy spectra for 3 orders of magnitude

Paper in preparation Analysis by Sven Schoo

- Structures of spectra confirmed
- H4a model probably not far away from real composition
- Models still do not agree to each other and to data
- Light component seems to agree better than heavy
- Problem probably in the muons (known due to special selection)
- Around 10¹⁵ eV still (again) no clear picture

Discussion

Points to discuss:

- Light and heavy knee established
- Light ankle probably there
- Difficult to compare experiments due to different observables what is contribution of MHz-Radio?
- KASCADE-Grande combined: no conclusive result as models still not describe reality
- > New models at lower energy (before the knee)???
- Still problem: absolute mass scale
- > Will be something new by IceTop / Tunka-133 data analysis?
- > LHAASO, GRAPES, TAIGA, TALE, HEAT, Auger-Infill, LOFAR, HAWC?

.

Lessons learned from the >25-years KASCADE facility

It is essential to provide:

- spectra of individual mass groups!!
- multi-parameter EAS measurements to validate hadronic interaction models
- > multi-messenger detection (need muons!!?)
- high statistics in a large energy range (mainly for composition dependent anisotropy studies)
- the right observation altitude
- room for R&D studies for future, improved technologies
- outreach and public data access

KASCADE-Grande Collaboration

Universität Siegen Experimentelle Teilchenphysik C.Grupen

Universität Wuppertal Fachbereich Physik D. Fuhrmann, R. Glasstetter, K-H. Kampert

University Trondheim, Norway S. Ostapchenko

> **IFSI, INAF** and University of Torino M. Bertaina, E. Cantoni, A. Chiavassa, F. Di Pierro, C. Morello, G. Trinchero

> > Universidad Michoacana Morelia, Mexico J.C. Arteaga

http://www-ik.fzk.de/KASCADE-Grande/

Institut für Kernphysik & Institut für Experimentelle Kernphysik **KIT - Karlsruhe Institute of Technology**

W.D.Apel, K.Bekk, J.Blümer, H.Bozdog, F.Cossavella, K.Daumiller, P.Doll, R.Engel, J.Engler, M.Finger, B.Fuchs, H.J.Gils, A.Haungs, D.Heck, D.Huber, T.Huege, D.Kang, H.O.Klages, K.Link, M.Ludwig, H.-J.Mathes, H.J.Mayer, M.Melissas, J.Milke, J.Oehlschläger, N.Palmieri, T.Pierog, H.Rebel, M.Roth, H.Schieler, S.Schoo, F.G.Schröder, H.Ulrich, A.Weindl, J.Wochele, M.Wommer

KASCADE: Contribution to most important question!

Still better understanding of extensive air showers by improved hadronic interaction models are needed to answer this question

Hopefully not another 100 years (since V.Hess) or even 25 years (since KASCADE) needed to finally answer this question

